基于二進制流量關(guān)鍵詞袋模型的攻擊檢測算法
針對分布式拒絕服務(wù)( DDoS)攻擊有效荷載快速變化,人工干預(yù)需要依賴經(jīng)驗設(shè)定預(yù)警閾值以及異常流量特征碼更新不及時等問題,提出一種基于二進制流量關(guān)鍵點詞袋( BSP-BoW)模型的DDoS攻擊檢測算法。該算法可以自動從當前網(wǎng)絡(luò)的流量數(shù)據(jù)中訓(xùn)練得到流量關(guān)鍵點(SP),針對不同拓撲網(wǎng)絡(luò)進行自適應(yīng)異常檢測,減少頻繁更新特征集帶來的人工成本。首先,對已有的攻擊流量和正常流量進行均值聚類,尋找網(wǎng)絡(luò)流量中的SP;然后,將原有的流量轉(zhuǎn)化映射到相應(yīng)SP上使用直方圖進行形式化表達;最后,通過歐氏距離進行DDoS攻擊的分類檢測。在公開數(shù)據(jù)庫DARPA LLDOSl.0上的實驗結(jié)果表明,所提算法的異常網(wǎng)絡(luò)流量識別率優(yōu)于現(xiàn)有的局部加權(quán)學(xué)習(xí)(LWL)、支持向量機(SVM)、隨機樹(Random Tree)、logistic回歸分析(logistic)、貝葉斯(NB)等方法。所提的基于詞袋聚類模型算法在拒絕服務(wù)攻擊的異常流量識別中有很好的識別效果和泛化能力,適合部署在中小企業(yè)( SME)網(wǎng)絡(luò)流量設(shè)備上。
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%