一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

視覺SLAM深度解讀

領(lǐng)銜資訊 ? 2019-09-11 22:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,SLAM技術(shù)取得了驚人的發(fā)展,領(lǐng)先一步的激光SLAM已成熟的應(yīng)用于各大場景中,視覺SLAM雖在落地應(yīng)用上不及激光SLAM,但也是目前研究的一大熱點,今天我們就來詳細(xì)聊聊視覺SLAM的那些事兒。

視覺SLAM是什么?

視覺SLAM主要是基于相機(jī)來完成環(huán)境的感知工作,相對而言,相機(jī)成本較低,容易放到商品硬件上,且圖像信息豐富,因此視覺SLAM也備受關(guān)注。

目前,視覺SLAM可分為單目、雙目(多目)、RGBD這三類,另還有魚眼、全景等特殊相機(jī),但目前在研究和產(chǎn)品中還屬于少數(shù),此外,結(jié)合慣性測量器件(Inertial Measurement Unit,IMU)的視覺SLAM也是現(xiàn)在研究熱點之一。從實現(xiàn)難度上來說,大致將這三類方法排序為:單目視覺>雙目視覺>RGBD。

單目相機(jī)SLAM簡稱MonoSLAM,僅用一支攝像頭就能完成SLAM。最大的優(yōu)點是傳感器簡單且成本低廉,但同時也有個大問題,就是不能確切的得到深度。

一方面是由于絕對深度未知,單目SLAM不能得到機(jī)器人運動軌跡及地圖的真實大小,如果把軌跡和房間同時放大兩倍,單目看到的像是一樣的,因此,單目SLAM只能估計一個相對深度。另一方面,單目相機(jī)無法依靠一張圖像獲得圖像中物體離自己的相對距離。為了估計這個相對深度,單目SLAM要靠運動中的三角測量,來求解相機(jī)運動并估計像素的空間位置。即是說,它的軌跡和地圖,只有在相機(jī)運動之后才能收斂,如果相機(jī)不進(jìn)行運動時,就無法得知像素的位置。同時,相機(jī)運動還不能是純粹的旋轉(zhuǎn),這就給單目SLAM的應(yīng)用帶來了一些麻煩。

而雙目相機(jī)與單目不同的是,立體視覺既可以在運動時估計深度,亦可在靜止時估計,消除了單目視覺的許多麻煩。不過,雙目或多目相機(jī)配置與標(biāo)定均較為復(fù)雜,其深度量程也隨雙目的基線與分辨率限制。通過雙目圖像計算像素距離,是一件非常消耗計算量的事情,現(xiàn)在多用FPGA來完成。

RGBD相機(jī)是2010年左右開始興起的一種相機(jī),它最大的特點是可以通過紅外結(jié)構(gòu)光或TOF原理,直接測出圖像中各像素離相機(jī)的距離。因此,它比傳統(tǒng)相機(jī)能夠提供更豐富的信息,也不必像單目或雙目那樣費時費力地計算深度。

視覺SLAM框架解讀

1.傳感器數(shù)據(jù)

在視覺SLAM中主要為相機(jī)圖像信息的讀取和預(yù)處理。如果在機(jī)器人中,還可能有碼盤,慣性傳感器等信息的讀取和同步。

2.視覺里程計

視覺里程計的主要任務(wù)是估算相鄰圖像間相機(jī)運動以及局部地圖的樣子,最簡單的是兩張圖像之間的運動關(guān)系。計算機(jī)是如何通過圖像確定相機(jī)的運動的。在圖像上,我們只能看到一個個的像素,知道他們是某些空間點在相機(jī)的成像平面投影的結(jié)果。所以必須先了解相機(jī)跟空間點的幾何關(guān)系。

Vo(又稱為前端)能夠通過相鄰幀間的圖像估計相機(jī)運動,并恢復(fù)場景的空間結(jié)構(gòu),稱它為里程計。被稱為里程計是因為它只計算相鄰時刻的運動,而和再往前的過去信息沒有關(guān)聯(lián)。相鄰時刻運動串聯(lián)起來,就構(gòu)成了機(jī)器人的運動軌跡,從而解決了定位問題。另一方面,根據(jù)每一時刻的相機(jī)位置,計算出各像素對應(yīng)的空間點的位置,就得到了地圖。

3.后端優(yōu)化

后端優(yōu)化主要是處理slam過程中噪聲的問題。任何傳感器都有噪聲,所以除了要處理“如何從圖像中估計出相機(jī)運動”,還要關(guān)心這個估計帶有多大的噪聲。

前端給后端提供待優(yōu)化的數(shù)據(jù),以及這些數(shù)據(jù)的初始值,而后端負(fù)責(zé)整體的優(yōu)化過程,它往往面對的只有數(shù)據(jù),不必關(guān)系這些數(shù)據(jù)來自哪里。在視覺slam中,前端和計算接視覺研究領(lǐng)域更為相關(guān),比如圖像的特征提取與匹配等,后端則主要是濾波和非線性優(yōu)化算法。

4.回環(huán)檢測

回環(huán)檢測也可以稱為閉環(huán)檢測,是指機(jī)器人識別曾到達(dá)場景的能力。如果檢測成功,可以顯著地減小累積誤差?;丨h(huán)檢測實質(zhì)上是一種檢測觀測數(shù)據(jù)相似性的算法。對于視覺SLAM,多數(shù)系統(tǒng)采用目前較為成熟的詞袋模型(Bag-of-Words, BoW)。詞袋模型把圖像中的視覺特征(SIFT, SURF等)聚類,然后建立詞典,進(jìn)而尋找每個圖中含有哪些“單詞”(word)。也有研究者使用傳統(tǒng)模式識別的方法,把回環(huán)檢測建構(gòu)成一個分類問題,訓(xùn)練分類器進(jìn)行分類。

5.建圖

建圖主要是根據(jù)估計的軌跡建立與任務(wù)要求對應(yīng)的地圖,在機(jī)器人學(xué)中,地圖的表示主要有柵格地圖、直接表征法、拓?fù)涞貓D以及特征點地圖這4種。而特征點地圖是用有關(guān)的幾何特征(如點、直線、面)表示環(huán)境,常見于視覺SLAM技術(shù)中。這種地圖一般通過如GPS、UWB以及攝像頭配合稀疏方式的vSLAM算法產(chǎn)生,優(yōu)點是相對數(shù)據(jù)存儲量和運算量比較小,多見于最早的SLAM算法中。

視覺SLAM工作原理

大多數(shù)視覺SLAM系統(tǒng)的工作方式是通過連續(xù)的相機(jī)幀,跟蹤設(shè)置關(guān)鍵點,以三角算法定位其3D位置,同時使用此信息來逼近推測相機(jī)自己的姿態(tài)。簡單來說,這些系統(tǒng)的目標(biāo)是繪制與自身位置相關(guān)的環(huán)境地圖。這個地圖可以用于機(jī)器人系統(tǒng)在該環(huán)境中導(dǎo)航作用。與其他形式的SLAM技術(shù)不同,只需一個3D視覺攝像頭,就可以做到這一點。

通過跟蹤攝像頭視頻幀中足夠數(shù)量的關(guān)鍵點,可以快速了解傳感器的方向和周圍物理環(huán)境的結(jié)構(gòu)。所有視覺SLAM系統(tǒng)都在不斷的工作,以使重新投影誤差(Reprojection Error)或投影點與實際點之間的差異最小化,通常是通過一種稱為Bundle Adjustment(BA)的算法解決方案。vSLAM系統(tǒng)需要實時操作,這涉及到大量的運算,因此位置數(shù)據(jù)和映射數(shù)據(jù)經(jīng)常分別進(jìn)行Bundle Adjustment,但同時進(jìn)行,便于在最終合并之前加快處理速度。

視覺SLAM與激光SLAM有什么區(qū)別?

在業(yè)內(nèi),視覺SLAM與激光SLAM誰更勝一籌,誰將成為未來主流趨勢這一問題,成為大家關(guān)注的熱點,不同的人也有不同的看法及見解,以下將從成本、應(yīng)用場景、地圖精度、易用性幾個方面來進(jìn)行詳細(xì)闡述。

1.成本

從成本上來說,激光雷達(dá)普遍價格較高,但目前國內(nèi)也有低成本的激光雷達(dá)解決方案,而VSLAM主要是通過攝像頭來采集數(shù)據(jù)信息,跟激光雷達(dá)一對比,攝像頭的成本顯然要低很多。但激光雷達(dá)能更高精度的測出障礙點的角度和距離,方便定位導(dǎo)航。

2.應(yīng)用場景

從應(yīng)用場景來說,VSLAM的應(yīng)用場景要豐富很多。VSLAM在室內(nèi)外環(huán)境下均能開展工作,但是對光的依賴程度高,在暗處或者一些無紋理區(qū)域是無法進(jìn)行工作的。而激光SLAM目前主要被應(yīng)用在室內(nèi),用來進(jìn)行地圖構(gòu)建和導(dǎo)航工作。

3.地圖精度

激光SLAM在構(gòu)建地圖的時候,精度較高,思嵐科技的RPLIDAR系列構(gòu)建的地圖精度可達(dá)到2cm左右;VSLAM,比如常見的,大家也用的非常多的深度攝像機(jī)Kinect,(測距范圍在3-12m之間),地圖構(gòu)建精度約3cm;所以激光SLAM構(gòu)建的地圖精度一般來說比VSLAM高,且能直接用于定位導(dǎo)航。

視覺SLAM的地圖建立

4.易用性

激光SLAM和基于深度相機(jī)的視覺SLAM均是通過直接獲取環(huán)境中的點云數(shù)據(jù),根據(jù)生成的點云數(shù)據(jù),測算哪里有障礙物以及障礙物的距離。但是基于單目、雙目、魚眼攝像機(jī)的視覺SLAM方案,則不能直接獲得環(huán)境中的點云,而是形成灰色或彩色圖像,需要通過不斷移動自身的位置,通過提取、匹配特征點,利用三角測距的方法測算出障礙物的距離。

總體來說,激光SLAM相對更為成熟,也是目前最為可靠的定位導(dǎo)航方案,而視覺SLAM仍是今后研究的一個主流方向,但未來,兩者融合是必然趨勢。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 視覺SLAM
    +關(guān)注

    關(guān)注

    0

    文章

    9

    瀏覽量

    1463
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于深度學(xué)習(xí)的增強(qiáng)版ORB-SLAM3詳解

    ORB-SLAM3雖是當(dāng)前最先進(jìn)的SLAM之一,但由于使用傳統(tǒng)的ORB(定向FAST和旋轉(zhuǎn)BRIEF)特征,在尺度、旋轉(zhuǎn)和光照發(fā)生顯著變化時可能會表現(xiàn)出局限性。
    的頭像 發(fā)表于 07-14 17:21 ?69次閱讀
    基于<b class='flag-5'>深度</b>學(xué)習(xí)的增強(qiáng)版ORB-<b class='flag-5'>SLAM</b>3詳解

    ARM Mali GPU 深度解讀

    ARM Mali GPU 深度解讀 ARM Mali 是 Arm 公司面向移動設(shè)備、嵌入式系統(tǒng)和基礎(chǔ)設(shè)施市場設(shè)計的圖形處理器(GPU)IP 核,憑借其異構(gòu)計算架構(gòu)、能效優(yōu)化和生態(tài)協(xié)同,成為全球移動
    的頭像 發(fā)表于 05-29 10:12 ?1030次閱讀

    三維高斯?jié)姙R大規(guī)模視覺SLAM系統(tǒng)解析

    近期興起的神經(jīng)輻射場(NeRF)與三維高斯?jié)姙R(3DGS)技術(shù)在視覺SLAM中展現(xiàn)出令人鼓舞的突破性成果。然而,當(dāng)前主流方法多依賴RGBD傳感器,并且僅適用于室內(nèi)環(huán)境。在大規(guī)模室外場景中的重建魯棒性
    的頭像 發(fā)表于 05-27 14:13 ?311次閱讀
    三維高斯?jié)姙R大規(guī)模<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>系統(tǒng)解析

    【「# ROS 2智能機(jī)器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎(chǔ)算法的應(yīng)用

    視覺巡線,展示了如何從數(shù)據(jù)采集、模型訓(xùn)練到機(jī)器人部署的完整流程。 值得注意的是,深度學(xué)習(xí)模型的實時性對機(jī)器人計算資源提出了較高要求,優(yōu)化模型(如TensorRT加速)是實際部署的關(guān)鍵。 二、SLAM
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機(jī)器人開發(fā)實踐」閱讀體驗】+ROS2應(yīng)用案例

    地圖構(gòu)建,包括算法原理介紹、安裝與配置方法、仿真環(huán)境中的SLAM以及真實機(jī)器人上的SLAM。 這一過程不僅涉及到計算機(jī)視覺和機(jī)器人學(xué)的知識,還需要對ROS 2的節(jié)點管理和數(shù)據(jù)處理有一定的了解。通過實踐
    發(fā)表于 04-27 11:42

    英偉達(dá)Cosmos-Reason1 模型深度解讀

    。以下從技術(shù)架構(gòu)、訓(xùn)練策略、核心能力及行業(yè)影響四方面展開深度解讀: Cosmos-Reason 1:從物理 AI 常識到具體決策 物理 AI 系統(tǒng)需要感知、理解和執(zhí)行物理世界中的復(fù)雜作。在本文中,我們提出了 Cosmos-Reason1 模型,該模型可以理解物理世界并通過
    的頭像 發(fā)表于 03-29 23:29 ?1955次閱讀

    一種基于點、線和消失點特征的單目SLAM系統(tǒng)設(shè)計

    本文提出了一種穩(wěn)健的單目視覺SLAM系統(tǒng),該系統(tǒng)同時利用點、線和消失點特征來進(jìn)行精確的相機(jī)位姿估計和地圖構(gòu)建,有效解決了傳統(tǒng)基于點特征的SLAM的局限性。
    的頭像 發(fā)表于 03-21 17:07 ?452次閱讀
    一種基于點、線和消失點特征的單目<b class='flag-5'>SLAM</b>系統(tǒng)設(shè)計

    深度解讀 30KPA64A 單向 TVS:64V 擊穿機(jī)制與高效防護(hù)策略

    深度解讀 30KPA64A 單向 TVS:64V 擊穿機(jī)制與高效防護(hù)策略
    的頭像 發(fā)表于 02-24 13:52 ?341次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>解讀</b> 30KPA64A 單向 TVS:64V 擊穿機(jī)制與高效防護(hù)策略

    利用VLM和MLLMs實現(xiàn)SLAM語義增強(qiáng)

    語義同步定位與建圖(SLAM)系統(tǒng)在對鄰近的語義相似物體進(jìn)行建圖時面臨困境,特別是在復(fù)雜的室內(nèi)環(huán)境中。本文提出了一種面向?qū)ο?b class='flag-5'>SLAM的語義增強(qiáng)(SEO-SLAM)的新型SLAM系統(tǒng),借
    的頭像 發(fā)表于 12-05 10:00 ?1341次閱讀
    利用VLM和MLLMs實現(xiàn)<b class='flag-5'>SLAM</b>語義增強(qiáng)

    4G模組加解密藝術(shù):通用函數(shù)的深度解讀

    今天是對加解密通用函數(shù)的深度解讀,我將詳細(xì)講解,建議收藏,不可錯過。
    的頭像 發(fā)表于 11-12 09:58 ?620次閱讀
    4G模組加解密藝術(shù):通用函數(shù)的<b class='flag-5'>深度</b><b class='flag-5'>解讀</b>

    MG-SLAM:融合結(jié)構(gòu)化線特征優(yōu)化高斯SLAM算法

    同步定位與地圖構(gòu)建 (SLAM) 是計算機(jī)視覺中的一個基本問題,旨在在同時跟蹤相機(jī)姿勢的同時對環(huán)境進(jìn)行地圖構(gòu)建?;趯W(xué)習(xí)的密集 SLAM 方法,尤其是神經(jīng)輻射場 (NeRF) 方法,在捕獲密集光度
    的頭像 發(fā)表于 11-11 16:17 ?872次閱讀
    MG-<b class='flag-5'>SLAM</b>:融合結(jié)構(gòu)化線特征優(yōu)化高斯<b class='flag-5'>SLAM</b>算法

    從算法角度看 SLAM(第 2 部分)

    ,分別是基于濾波器的 SLAM、基于圖形的 SLAM 和基于深度學(xué)習(xí)的 SLAM。 基于濾波器的 SLAM
    的頭像 發(fā)表于 10-02 16:39 ?787次閱讀
    從算法角度看 <b class='flag-5'>SLAM</b>(第 2 部分)

    一種適用于動態(tài)環(huán)境的實時視覺SLAM系統(tǒng)

    既能保證效率和精度,又無需GPU,行業(yè)第一個達(dá)到此目標(biāo)的視覺動態(tài)SLAM系統(tǒng)。
    的頭像 發(fā)表于 09-30 14:35 ?1320次閱讀
    一種適用于動態(tài)環(huán)境的實時<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>系統(tǒng)

    深度解讀 VCXO VG7050CDN:可變晶體振蕩器的卓越之選

    深度解讀 VCXO VG7050CDN:可變晶體振蕩器的卓越之選
    的頭像 發(fā)表于 07-24 10:58 ?685次閱讀