一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于無監(jiān)督學(xué)習(xí)和圖學(xué)習(xí)的大數(shù)據(jù)挖掘

1ujk_Tencent_TE ? 來源:騰訊技術(shù)工程官方號 ? 2019-12-08 10:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在IJCAI-2019期間舉辦的騰訊TAIC晚宴和Booth Talk中,來自TEG數(shù)據(jù)平臺的張長旺向大家介紹了自己所在用戶畫像組的前沿科研結(jié)果:

1. 非監(jiān)督短文本層級分類;

2. 大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)。

其所在團(tuán)隊(duì)積極與學(xué)術(shù)界科研合作,并希望有夢想、愛學(xué)習(xí)的實(shí)力派加入,共同研究和應(yīng)用半監(jiān)督/弱監(jiān)督/無監(jiān)督學(xué)習(xí)、小樣本學(xué)習(xí)、大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)等做大數(shù)據(jù)挖掘。

科研結(jié)果1:非監(jiān)督短文本層級分類

首先以下用戶和AI算法的對話,顯示了現(xiàn)實(shí)業(yè)務(wù)中使用現(xiàn)有監(jiān)督文本分類算法的遇到的一些困境和問題:

算法需要海量訓(xùn)練數(shù)據(jù)

算法模型用戶不可控

算法不能很好的適應(yīng)類目的變化

我們分析現(xiàn)有監(jiān)督算法的主要問題在于沒有真正的知識, 沒有對于文本和類目的真正的理解?,F(xiàn)有算法只是在學(xué)習(xí)大量人工標(biāo)注訓(xùn)練樣本里面的模式。為了解決這個問題,我們啟動了一個叫做: 基于關(guān)鍵詞知識與類目知識的非監(jiān)督短文本層級分類的探索項(xiàng)目。

項(xiàng)目的主要思想是引入關(guān)鍵詞和類目兩種知識來幫助算法理解關(guān)鍵詞和類目的含義。然后基于知識進(jìn)行文本的分類和標(biāo)注。關(guān)鍵詞知識主要來自3個方面包括:關(guān)鍵詞的網(wǎng)絡(luò)搜索上下文、關(guān)鍵詞的百科上下文、關(guān)鍵詞到類目詞的后驗(yàn)關(guān)聯(lián)概率。我們提出類目語義表達(dá)式來支持用戶表達(dá)豐富的類目本身和類目之間的關(guān)系的語義。這兩樣知識的引入幫助算法擺脫了對于大量人工標(biāo)注訓(xùn)練樣本的依賴,同時算法分類的過程做到了人工可理解,人工可控制。

pIYBAF3sZiCAD0NcAAGXC_cWyhc920.jpg

基于關(guān)鍵詞和類目知識的無監(jiān)督文本層級分類算法流程如下:

對文本提取關(guān)鍵詞

根據(jù)關(guān)鍵詞知識計算關(guān)鍵詞到類目詞的相關(guān)度詞向量

根據(jù)關(guān)鍵詞的相關(guān)度詞向量計算文本的相關(guān)度詞向量

根據(jù)文本的相關(guān)度詞向量和類目語義表達(dá)式計算文本與每個類目的匹配度

每個文本被分為與之匹配度最高的類目

pIYBAF3sZiCAc4I1AAFF-PRpshM196.jpg

通過在兩個文本分類數(shù)據(jù)集合上面的實(shí)驗(yàn),我們發(fā)現(xiàn),我們自研的算法能夠在沒有訓(xùn)練樣本的情況下提供質(zhì)量可用的結(jié)果,其一級類目準(zhǔn)確率能夠達(dá)到80%,并且明顯高于現(xiàn)有其他非監(jiān)督算法。

pIYBAF3sZiCAPnfmAAGamuFnOPU555.jpg

科研結(jié)果2:大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)

Network Representation Learning 或者說 Graph Embedding 是復(fù)雜網(wǎng)絡(luò)最新的研究課題,意在通過神經(jīng)網(wǎng)絡(luò)模型,把圖結(jié)構(gòu)向量化,為節(jié)點(diǎn)分類、鏈路預(yù)測、社團(tuán)發(fā)現(xiàn)等挖掘任務(wù)提供方便有效的特征,以克服圖結(jié)構(gòu)難以應(yīng)用到機(jī)器學(xué)習(xí)算法中的難題。

本次我們在IJCAI發(fā)表的學(xué)術(shù)論文“Identifying Illicit Accounts in Large Scale E-payment Networks - A Graph Representation Learning Approach”創(chuàng)新性提出結(jié)合邊屬性的圖卷積神經(jīng)網(wǎng)絡(luò)模型,彌補(bǔ)了現(xiàn)有算法無法利用邊屬性為節(jié)點(diǎn)分類提供更多信息的不足。

pIYBAF3sZiCAf4jWAADyry40GSc801.jpg

現(xiàn)有的圖學(xué)習(xí)算法,絕大部分都忽視了邊上信息的價值。在這里我們提出了一種可以把邊的信息傳輸?shù)焦?jié)點(diǎn)表示結(jié)果的改進(jìn)的GCN算法。算法主要思路是在做GCN里面周邊鄰居節(jié)點(diǎn)向量的聚合計算之前,把每個節(jié)點(diǎn)連接邊的Embedding向量拼接在對應(yīng)鄰居節(jié)點(diǎn)的Embedding向量后面。實(shí)驗(yàn)顯示,我們的算法對于金融分類問題具有更優(yōu)的結(jié)果。我們團(tuán)隊(duì)正在進(jìn)一步優(yōu)化模型,正在研發(fā)利用時序的GCN模型,以可以利用邊的時序交互信息,從而更好的表示動態(tài)網(wǎng)絡(luò)。

pIYBAF3sZiGAcZ4XAAGfvV5Mbk0987.jpg

pIYBAF3sZiGAVDl_AAEtrHfo7Kk905.jpg

同時,數(shù)平數(shù)據(jù)中心研發(fā)的Angel參數(shù)服務(wù)器平臺,針對關(guān)系型數(shù)據(jù)結(jié)構(gòu),在計算性能上對圖算法做了優(yōu)化,極大加速了PageRank等算法的計算速度,比如計算用戶中心度的Closeness算法,性能比基于Spark GraphX的算法提升了6.7倍。下圖顯示對于大型圖的計算,我們Angle框架的速度具有明顯的優(yōu)勢。

pIYBAF3sZiGANHYUAAEl0_C2wBk224.jpg

pIYBAF3sZiGAXUHmAAEim4GgRxY047.jpg

我們所在團(tuán)隊(duì)積極與學(xué)術(shù)界科研合作,并希望有夢想、愛學(xué)習(xí)的實(shí)力派加入,共同研究和應(yīng)用半監(jiān)督/弱監(jiān)督/無監(jiān)督學(xué)習(xí)、小樣本學(xué)習(xí)、復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)做大數(shù)據(jù)挖掘。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4710

    瀏覽量

    95411
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8960

    瀏覽量

    140265

原文標(biāo)題:IJCAI2019報告:基于無監(jiān)督學(xué)習(xí)和圖學(xué)習(xí)的大數(shù)據(jù)挖掘

文章出處:【微信號:Tencent_TEG,微信公眾號:騰訊技術(shù)工程官方號】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    任正非說 AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來呢?

    的基本理論。了解監(jiān)督學(xué)習(xí)、監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的基本原理。例如,在監(jiān)督學(xué)習(xí)中,理解如何通過標(biāo)注數(shù)據(jù)
    發(fā)表于 07-08 17:44

    機(jī)器學(xué)習(xí)異常檢測實(shí)戰(zhàn):用Isolation Forest快速構(gòu)建標(biāo)簽異常檢測系統(tǒng)

    本文轉(zhuǎn)自:DeepHubIMBA監(jiān)督異常檢測作為機(jī)器學(xué)習(xí)領(lǐng)域的重要分支,專門用于在缺乏標(biāo)記數(shù)據(jù)的環(huán)境中識別異常事件。本文深入探討異常檢測技術(shù)的理論基礎(chǔ)與實(shí)踐應(yīng)用,通過Isolatio
    的頭像 發(fā)表于 06-24 11:40 ?640次閱讀
    機(jī)器<b class='flag-5'>學(xué)習(xí)</b>異常檢測實(shí)戰(zhàn):用Isolation Forest快速構(gòu)建<b class='flag-5'>無</b>標(biāo)簽異常檢測系統(tǒng)

    使用MATLAB進(jìn)行監(jiān)督學(xué)習(xí)

    監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機(jī)器學(xué)習(xí)方法。監(jiān)督學(xué)習(xí)旨在識別
    的頭像 發(fā)表于 05-16 14:48 ?690次閱讀
    使用MATLAB進(jìn)行<b class='flag-5'>無</b><b class='flag-5'>監(jiān)督學(xué)習(xí)</b>

    大數(shù)據(jù)與云計算是干嘛的?

    大數(shù)據(jù)與云計算是支撐現(xiàn)代數(shù)字化技術(shù)的兩大核心。大數(shù)據(jù)專注于海量數(shù)據(jù)的采集、存儲、分析與價值挖掘;云計算通過虛擬化資源池提供彈性計算、存儲及服務(wù)能力。兩者結(jié)合,共同賦能企業(yè)決策、業(yè)務(wù)創(chuàng)新
    的頭像 發(fā)表于 02-20 14:48 ?637次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)
    的頭像 發(fā)表于 11-16 01:07 ?965次閱讀
    什么是機(jī)器<b class='flag-5'>學(xué)習(xí)</b>?通過機(jī)器<b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    時空引導(dǎo)下的時間序列自監(jiān)督學(xué)習(xí)框架

    【導(dǎo)讀】最近,香港科技大學(xué)、上海AI Lab等多個組織聯(lián)合發(fā)布了一篇時間序列監(jiān)督預(yù)訓(xùn)練的文章,相比原來的TS2Vec等時間序列表示學(xué)習(xí)工作,核心在于提出了將空間信息融入到預(yù)訓(xùn)練階段,即在預(yù)訓(xùn)練階段
    的頭像 發(fā)表于 11-15 11:41 ?770次閱讀
    時空引導(dǎo)下的時間序列自<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>框架

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)等機(jī)器學(xué)習(xí)任務(wù)設(shè)計的處理器,其與機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?1229次閱讀

    如何使用 PyTorch 進(jìn)行強(qiáng)化學(xué)習(xí)

    的計算和自動微分功能,非常適合實(shí)現(xiàn)復(fù)雜的強(qiáng)化學(xué)習(xí)算法。 1. 環(huán)境(Environment) 在強(qiáng)化學(xué)習(xí)中,環(huán)境是一個抽象的概念,它定義了智能體(agent)可以執(zhí)行的動作(actions)、觀察到
    的頭像 發(fā)表于 11-05 17:34 ?1045次閱讀

    曙光公司成都云中心助力提升監(jiān)督質(zhì)效

    數(shù)字化時代,用好大數(shù)據(jù),推動數(shù)字技術(shù)深度融入紀(jì)檢監(jiān)察各項(xiàng)業(yè)務(wù),是大勢所趨。當(dāng)前,各地正在探索推進(jìn)大數(shù)據(jù)監(jiān)督,借助海量數(shù)據(jù)、算力、算法,不斷延伸監(jiān)督
    的頭像 發(fā)表于 11-05 10:05 ?528次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2981次閱讀
    人工智能、機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過程,實(shí)現(xiàn)對復(fù)雜數(shù)據(jù)學(xué)習(xí)和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型提供了核心的技術(shù)支撐,使得大模型能夠更好地擬
    的頭像 發(fā)表于 10-23 15:25 ?2900次閱讀

    基于Kepware的Hadoop大數(shù)據(jù)應(yīng)用構(gòu)建-提升數(shù)據(jù)價值利用效能

    處理超大數(shù)據(jù)集。 Hadoop的生態(tài)系統(tǒng)非常豐富,包括許多相關(guān)工具和技術(shù),如Hive、Pig、HBase等,這些工具可以方便地構(gòu)建復(fù)雜的大數(shù)據(jù)應(yīng)用。Hadoop廣泛應(yīng)用于各種場景,包括數(shù)據(jù)處理和分析、
    的頭像 發(fā)表于 10-08 15:12 ?358次閱讀
    基于Kepware的Hadoop<b class='flag-5'>大數(shù)據(jù)</b>應(yīng)用構(gòu)建-提升<b class='flag-5'>數(shù)據(jù)</b>價值利用效能

    基于大數(shù)據(jù)與深度學(xué)習(xí)的穿戴式運(yùn)動心率算法

    性能的關(guān)鍵手段。然而,在復(fù)雜多變的運(yùn)動環(huán)境中,準(zhǔn)確測量心率數(shù)據(jù)對于傳統(tǒng)算法而言具有較大的技術(shù)瓶頂。本文將探討如何運(yùn)用大數(shù)據(jù)和深度學(xué)習(xí)技術(shù)來開發(fā)創(chuàng)新的穿戴式運(yùn)動心率算
    的頭像 發(fā)表于 09-10 08:03 ?648次閱讀
    基于<b class='flag-5'>大數(shù)據(jù)</b>與深度<b class='flag-5'>學(xué)習(xí)</b>的穿戴式運(yùn)動心率算法

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語法結(jié)構(gòu)的學(xué)習(xí),還包括對語言的深層次理解,如文化背景、語境含義和情感色彩等。 自監(jiān)督學(xué)習(xí):模型采用自
    發(fā)表于 08-02 11:03

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機(jī)器學(xué)習(xí)的分類:有監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、自監(jiān)督學(xué)習(xí)和強(qiáng)化
    發(fā)表于 07-25 14:33