一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能生活服務(wù)運用了哪些AI算法

工程師鄧生 ? 來源:OFweek人工智能網(wǎng) ? 作者:OFweek人工智能網(wǎng) ? 2020-01-23 11:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

AI技術(shù)發(fā)展的三大支柱:“算法+大數(shù)據(jù)+計算能力”,算法是人工智能發(fā)展的核心關(guān)鍵之一,很多技術(shù)環(huán)節(jié)和系統(tǒng)功能的實現(xiàn)都依賴于算法的精準度,算法的優(yōu)劣直接影響了人工智能的發(fā)展方向。那么我們當下感受到的人工智能生活服務(wù),運用了哪些AI算法呢?跟隨OFweek編輯一起來看看吧。

1.人工神經(jīng)網(wǎng)絡(luò)

人工神經(jīng)網(wǎng)絡(luò)(ANN)以大腦處理機制作為基礎(chǔ),開發(fā)用于建立復(fù)雜模式和預(yù)測問題的算法。該類型算法在語音、語義、視覺、各類游戲等任務(wù)中表現(xiàn)極好,但需要大量數(shù)據(jù)進行訓(xùn)練,且訓(xùn)練要求很高的硬件配置。

ANN在圖像和字符識別中起著重要的作用,手寫字符識別在欺詐檢測甚至國家安全評估中有很多應(yīng)用。ANN 的研究為深層神經(jīng)網(wǎng)絡(luò)鋪平了道路,是「深度學(xué)習(xí)」的基礎(chǔ),現(xiàn)已在計算機視覺、語音識別、自然語言處理等方向開創(chuàng)了一系列令人激動的創(chuàng)新。

2.決策樹

機器學(xué)習(xí)中,決策樹是一個預(yù)測模型,他代表的是對象屬性與對象值之間的一種映射關(guān)系。其采用一種樹形結(jié)構(gòu),其中每個內(nèi)部節(jié)點表示一個屬性上的測試,每個分支代表一個測試輸出,每個葉節(jié)點代表一種類別。

決策樹算法屬于非參數(shù)型,較為容易解釋,但其趨向過擬合;可能陷入局部最小值中;無法在線學(xué)習(xí)。決策樹的生成主要分為兩步:1.節(jié)點的分裂:當一個節(jié)點所代表的屬性無法給出判斷時,則選擇將該節(jié)點分成2個子節(jié)點 2. 閾值的確定:選擇適當?shù)拈撝凳沟梅诸愬e誤率最小。

3.集成算法

簡單算法一般復(fù)雜度低、速度快、易展示結(jié)果,其中的模型可以單獨進行訓(xùn)練,并且它們的預(yù)測能以某種方式結(jié)合起來去做出一個總體預(yù)測。每種算法好像一種專家,集成就是把簡單的算法組織起來,即多個專家共同決定結(jié)果。

集成算法比使用單個模型預(yù)測出來的結(jié)果要精確的多,但需要進行大量的維護工作。

AdaBoost的實現(xiàn)是一個漸進的過程,從一個最基礎(chǔ)的分類器開始,每次尋找一個最能解決當前錯誤樣本的分類器。好處是自帶了特征選擇,只使用在訓(xùn)練集中發(fā)現(xiàn)有效的特征,這樣就降低了分類時需要計算的特征數(shù)量,也在一定程度上解決了高維數(shù)據(jù)難以理解的問題。

4.回歸算法

回歸分析是在一系列的已知自變量與因變量之間的相關(guān)關(guān)系的基礎(chǔ)上,建立變量之間的回歸方程,把回歸方程作為算法模型,通過其來實現(xiàn)對新自變量得出因變量的關(guān)系。因此回歸分析是實用的預(yù)測模型或分類模型。

5.貝葉斯算法

樸素貝葉斯分類是一種十分簡單的分類算法:對于給出的待分類項,求解在此項出現(xiàn)的條件下各個類別出現(xiàn)的概率,哪個最大,就認為此待分類項屬于哪個類別。

樸素貝葉斯分類分為三個階段,1.根據(jù)具體情況確定特征屬性,并對每個特征屬性進行適當劃分,形成訓(xùn)練樣本集合2.計算每個類別在訓(xùn)練樣本中的出現(xiàn)頻率及每個特征屬性劃分對每個類別的條件概率估計3.使用分類器對待分類項進行分類。

6.K近鄰

K緊鄰算法的核心是未標記樣本的類別,計算待標記樣本和數(shù)據(jù)集中每個樣本的距離,取距離最近的k個樣本。待標記的樣本所屬類別就由這k個距離最近的樣本投票產(chǎn)生,給定其測試樣本,基于某種距離度量找出訓(xùn)練集中與其最靠近的k個訓(xùn)練樣本,然后基于這k個“鄰居”的信息來進行預(yù)測。

K緊鄰算法準確性高,對異常值和噪聲有較高的容忍度,但計算量較大,對內(nèi)存的需求也較大。該算法主要應(yīng)用于文本分類、模式識別、圖像及空間分類。

7.聚類算法

聚類算法是機器學(xué)習(xí)中涉及對數(shù)據(jù)進行分組的一種算法。在給定的數(shù)據(jù)集中,我們可以通過聚類算法將其分成一些不同的組。應(yīng)用中科利用聚類分析,通過將數(shù)據(jù)分組可以比較清晰的獲取到數(shù)據(jù)信息。該算法讓數(shù)據(jù)變得有意義,但存在結(jié)果難以解讀,針對不尋常的數(shù)據(jù)組,結(jié)果可能無用。

在商業(yè)領(lǐng)域中,聚類可以幫助市場分析人員從消費者數(shù)據(jù)庫中區(qū)分出不同的消費群體來,并且概括出每一類消費者的消費模式或者說習(xí)慣。

8.隨機森林算法

隨機森林是一種有監(jiān)督學(xué)習(xí)算法,基于決策樹為學(xué)習(xí)器的集成學(xué)習(xí)算法。隨機森林非常簡單,易于實現(xiàn),計算開銷也很小,但是它在分類和回歸上表現(xiàn)出非常驚人的性能,因此,隨機森林被譽為“代表集成學(xué)習(xí)技術(shù)水平的方法”。

隨機森林擁有廣泛的應(yīng)用前景,從市場營銷到醫(yī)療保健保險,既可以用來做市場營銷模擬的建模,統(tǒng)計客戶來源,保留和流失,也可用來預(yù)測疾病的風(fēng)險和病患者的易感性。

9.支持向量機

支持向量機通過尋求結(jié)構(gòu)化風(fēng)險最小來提高學(xué)習(xí)機泛化能力,實現(xiàn)經(jīng)驗風(fēng)險和置信范圍的最小化,從而達到在統(tǒng)計樣本量較少的情況下,亦能獲得良好統(tǒng)計規(guī)律的目的。它是一種二類分類模型,其基本模型定義為特征空間上的間隔最大的線性分類器,即支持向量機的學(xué)習(xí)策略便是間隔最大化,最終可轉(zhuǎn)化為一個凸二次規(guī)劃問題的求解。

支持向量機可應(yīng)用于諸如文本分類,圖像分類,生物序列分析和生物數(shù)據(jù)挖掘,手寫字符識別等領(lǐng)域。

10.深度學(xué)習(xí)

深度學(xué)習(xí)基于人工神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí),區(qū)別于傳統(tǒng)的機器學(xué)習(xí),深度學(xué)習(xí)需要更多樣本,換來更少的人工標注和更高的準確率。

深度學(xué)習(xí)是學(xué)習(xí)樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次,這些學(xué)習(xí)過程中獲得的信息對諸如文字,圖像和聲音等數(shù)據(jù)的解釋有很大的幫助。它的最終目標是讓機器能夠像人一樣具有分析學(xué)習(xí)能力,能夠識別文字、圖像和聲音等數(shù)據(jù)。 作為復(fù)雜的機器學(xué)習(xí)算法,在語音和圖像識別方面取得的效果,遠遠超過先前相關(guān)技術(shù)。

小結(jié)

算法是計算機科學(xué)領(lǐng)域最重要的基石之一,當下需要處理的信息量是呈指數(shù)級的增長,每人每天都會創(chuàng)造出大量數(shù)據(jù),無論是三維圖形、海量數(shù)據(jù)處理、機器學(xué)習(xí)、語音識別,都需要極大的計算量,在AI時代越來越多的挑戰(zhàn)需要靠卓越的算法來解決。
責(zé)任編輯:wv

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    48987

    瀏覽量

    249040
  • AI算法
    +關(guān)注

    關(guān)注

    0

    文章

    263

    瀏覽量

    12675
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會發(fā)展的當下,無論是探索未來職業(yè)方向,還是更新技術(shù)儲備,掌握大模型知識都已成為新時代的必修課。從職場上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作
    發(fā)表于 07-04 11:10

    開售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴展/重力感應(yīng)/RS232/RS485/IO 擴展/I2C 擴展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個全新八核擁有超強性能的人工智能
    發(fā)表于 04-23 10:55

    AI人工智能隱私保護怎么樣

    在當今科技飛速發(fā)展的時代,AI人工智能已經(jīng)深入到我們生活的方方面面,從醫(yī)療診斷到交通調(diào)度,從教育輔助到娛樂互動,其影響力無處不在。然而,隨著AI人工
    的頭像 發(fā)表于 03-11 09:46 ?472次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>人工智能</b>隱私保護怎么樣

    人工智能和機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能AI)已經(jīng)是當前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個領(lǐng)域,對于各個產(chǎn)業(yè)都帶來相當重要的影響,且即將改變?nèi)祟愇磥戆l(fā)展的方方面面。本文將為您介紹
    的頭像 發(fā)表于 01-25 17:37 ?913次閱讀
    <b class='flag-5'>人工智能</b>和機器學(xué)習(xí)以及Edge <b class='flag-5'>AI</b>的概念與應(yīng)用

    標貝科技:AI基礎(chǔ)數(shù)據(jù)服務(wù),人工智能行業(yè)發(fā)展的底層支撐

    隨著不同大模型在語言理解及生成等領(lǐng)域的出色表現(xiàn),大模型別后的規(guī)模規(guī)律不斷強化數(shù)據(jù)在要提升AI性能上的關(guān)鍵作用,AI數(shù)據(jù)服務(wù)可加速高質(zhì)量數(shù)據(jù)的獲取與標注,推動AI
    的頭像 發(fā)表于 11-14 18:32 ?610次閱讀
    標貝科技:<b class='flag-5'>AI</b>基礎(chǔ)數(shù)據(jù)<b class='flag-5'>服務(wù)</b>,<b class='flag-5'>人工智能</b>行業(yè)發(fā)展的底層支撐

    嵌入式和人工智能究竟是什么關(guān)系?

    應(yīng)用場景。例如,在智能家居領(lǐng)域,嵌入式系統(tǒng)可以控制各種智能設(shè)備,如智能燈泡、智能空調(diào)等,而人工智能則可以實現(xiàn)對這些設(shè)備的
    發(fā)表于 11-14 16:39

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    非常高興本周末收到一本新書,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 關(guān)于《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章“AI
    發(fā)表于 10-14 09:16

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,還促進了新理論、新技術(shù)的誕生。 3. 挑戰(zhàn)與機遇并存 盡管人工智能為科學(xué)創(chuàng)新帶來了巨大潛力,但第一章也誠實地討論了伴隨而來的挑戰(zhàn)。數(shù)據(jù)隱私、算法偏見、倫理道德等問題不容忽視。如何在利用AI提升科研效率
    發(fā)表于 10-14 09:12

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么?
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05