一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

采用LFCSP和法蘭封裝的RF放大器的熱管理計算

亞德諾半導(dǎo)體 ? 來源:Coco_cocO ? 作者:Eamon Nash ADI公司 ? 2020-01-17 15:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

簡介

射頻(RF)放大器可采用引腳架構(gòu)芯片級封裝(LFCSP)和法蘭封裝,通過成熟的回流焊工藝安裝在印刷電路板(PCB)上。PCB不僅充當(dāng)器件之間的電氣互聯(lián)連接,還是放大器排熱的主要途徑(利用封裝底部的金屬塊)。

本應(yīng)用筆記介紹熱阻概念,并且提供一種技術(shù),用于從裸片到采用LFCSP或法蘭封裝的典型RF放大器的散熱器的熱流動建模。

熱概念回顧

熱流

材料不同區(qū)域之間存在溫度差時,熱量從高溫區(qū)流向低溫區(qū)。這一過程與電流類似,電流經(jīng)由電路,從高電勢區(qū)域流向低電勢區(qū)域。

熱阻

所有材料都具有一定的導(dǎo)熱性。熱導(dǎo)率是衡量材料導(dǎo)熱能力的標(biāo)準(zhǔn)。熱導(dǎo)率值通常以瓦特每米開爾文(W/mK)或瓦特每英寸開爾文(W/inK)為單位。如果已知材料的熱導(dǎo)率,則采用以下公式,以C/W或K/W為單位計算材料單位體積的熱阻(θ):

???? (1)

其中:

Length表示材料的長度或厚度,以米為單位。

k為材料的熱導(dǎo)率。

Area表示橫截面積,以m2為單位。

溫度

利用熱流量等效于電流量的類比,本身具備熱阻且支持熱流流動的材料的溫差如下:

?T = Q × θ (2)

其中:

?T表示材料不同區(qū)域之間的溫差(K或°C)。

Q表示熱流(W)。

θ表示材料的熱阻(C/W或K/W)。

器件的熱阻

器件的熱阻相當(dāng)復(fù)雜,往往與溫度呈非線性關(guān)系。因此,我們采用有限元分析方法建立器件的熱模型。紅外攝影技術(shù)可以確定器件連接處的溫度和操作期間封裝的溫度?;谶@些分析和測量結(jié)果,可以確定等效的熱阻。在對器件實施測量的特定條件下,等效熱阻是有效的,一般是在最大操作溫度下。

參考表1,查看典型的RF放大器的絕對最大額定值表。

表1.典型的RF放大器的絕對最大額定值

參數(shù) 額定值
漏極偏置電壓(VDD) 60 V dc
柵極偏置電壓(VGG1) -8 V至0 V dc
射頻(RF)輸入功率(RFIN) 35 dBm
連續(xù)功耗(PDISS) (T = 85°C)(85°C以上以636 mW/°C減額) 89.4 W
熱阻,結(jié)至焊盤背面(θJC) 1.57°C/W
溫度范圍
存儲 -55°C至+150°C
工作溫度 -40°C至+85°C
保持百萬小時平均無故障時間(MTTF)的結(jié)溫范圍(TJ) 225°C
標(biāo)稱結(jié)溫(TCASE = 85°C,VDD = 50 V) 187°C

對于LFCSP和法蘭封裝,假定封裝外殼是封裝底部的金屬塊。

最高結(jié)溫

在給定的數(shù)據(jù)手冊中,會在絕對最大額定值表中給出每個產(chǎn)品的最大結(jié)溫(基于器件的半導(dǎo)體工藝)。在表1中,指定的維持百萬小時MTTF的最大結(jié)溫為225℃。指定的這個溫度一般適用于氮化鎵(GaN)器件。超過這個限值會導(dǎo)致器件的壽命縮短,且出現(xiàn)永久性的器件故障。

工作溫度范圍

器件的工作溫度(TCASE)已在封裝底座上給出。TCASE是封裝底部金屬塊的溫度。工作溫度不是器件周圍空氣的溫度。

如果已知TCASE和PDISS,則很容易計算得出結(jié)溫(TJ)。例如,如果TCASE=75°C,PDISS=70 W,則可以使用以下公式計算TJ:

TJ = TCASE + (θJC × PDISS)
= 75°C + (1.57°C/W × 70 W)
= 184.9°C

考量到器件的可靠性時,TJ是最重要的規(guī)格參數(shù),決不能超過此數(shù)值。相反,如果可以通過降低PDISS,使TJ保持在最大可允許的水平之下,則TCASE可以超過指定的絕對最大額定值。在此例中,當(dāng)外殼溫度超過指定的最大值85°C時,可使用減額值636 mW/°C來計算最大可允許的PDISS。例如,使用表1中的數(shù)據(jù),當(dāng)PDISS的限值為83 W時,可允許的最大TCASE為95°C。PDISS可使用以下公式計算:

PDISS = 89.4 W ? (636 mW/°C × 10°C)
= 83 W

使用此PDISS 值,可以計算得出225°C結(jié)溫,計算公式如下:

TJ = TCASE + (θJC × PDISS)
= 95°C + (1.57°C/W × 83 W) (3)

器件和PCB環(huán)境的熱模型

為了充分了解器件周圍的整個熱環(huán)境,必須對器件的散熱路徑和材料進(jìn)行建模。圖1顯示了安裝在PCB和散熱器上的LFCSP封裝的截面原理圖。在本例中,裸片生熱,然后經(jīng)由封裝和PCB傳輸?shù)缴崞鳌R_定器件連接處的溫度,必須計算熱阻。利用熱阻與熱流,可計算得出結(jié)溫。然后將結(jié)溫與最大指定結(jié)溫進(jìn)行比較,以確定器件是否可靠地運行。

在圖1中,器件連接處到散熱器的散熱路徑定義如下:

? θJA是器件連接處到封裝頂部周圍空氣的熱阻。

? θJC是連接處到外殼(封裝底部的金屬塊)的熱阻。

? θSN63是焊料的熱阻。

? θCU是PCB上鍍銅的熱阻。

? θVIACU是通孔上鍍銅的熱阻。

? θVIASN63是通孔中填充的焊料的熱阻。

? θPCB是PCB層壓材料的熱阻。

在典型電路板中,包含多個通孔和多個PCB層。在計算系統(tǒng)截面的熱阻時,會使用熱電路計算各個熱阻,并將串聯(lián)熱阻與并聯(lián)熱阻結(jié)合起來,以此確定器件的總熱阻。

圖1.安裝在PCB和散熱器上的LFCSP封裝的熱模型

系統(tǒng)的熱阻計算

對于每個散熱路徑,都使用公式1來計算其熱阻。要計算得出各個熱阻值,必須已知材料的熱導(dǎo)率。參見表2,查看PCB總成中常用材料的熱導(dǎo)率。

表2.常用PCB材料的熱導(dǎo)率

材料 熱導(dǎo)率(W/inK)
銅(Cu) 10.008
鋁(Al) 5.499
Rogers 4350 (RO4350) 0.016
FR4或G-10層壓材料 0.008
氧化鋁(Al2O3) 0.701
SN63焊料 1.270
導(dǎo)熱環(huán)氧樹脂 0.020
砷化鎵(GaAs) 1.501
模塑料 0.019


圖2基于圖1中所示的熱模型,顯示等效的熱電路。TPKG表示封裝底部的溫度,TSINK表示散熱器的溫度。在圖2中,假設(shè)封裝(TA)周圍的環(huán)境空氣溫度恒定不變。對于外層包有外殼的真實總成,TA可能隨著功耗增加而升高。本分析忽略了散熱路徑至環(huán)境空氣的溫度,因為對于具有金屬塊的LFCSP和法蘭封裝,θJA要遠(yuǎn)大于θJC。

圖2.等效的熱電路

熱阻示例:HMC408LP3評估板

HMC408LP3功率放大器采用一塊0.01英寸厚,由Rogers RO4350層壓板構(gòu)成的評估板。圖3所示的接地焊盤面積為0.065 × 0.065英寸,上有5個直徑為0.012英寸的通孔。電路板頂部和底部分別有1盎司鍍銅(0.0014英寸厚)。通孔采用?盎司銅進(jìn)行鍍層(0.0007英寸厚)。裝配期間,會在通孔中填塞SN63焊料。分析顯示,幾乎所有的熱流都會流經(jīng)焊料填塞的通孔。因此,在本分析中,余下的電路板布局都可忽略。

圖3.接地焊盤布局

各個熱阻都使用公式1計算得出。計算θSN63時,采用的SN63焊料的熱導(dǎo)率為1.27 W/inK,長度(或者焊接點的厚度)為0.002英寸,焊接面積為0.004225英寸(0.065英寸× 0.065英寸)。

????? (4)

接下來,以相似方式計算PCB頂部的銅鍍層的值。銅鍍層的熱導(dǎo)率為10.008 W/inK,長度為0.0014 英寸(1盎司銅),鍍層面積為0.00366平方英寸(in2)。

?? (5)

對于通孔上銅鍍層的面積,采用以下公式進(jìn)行計算

面積 = π × (rO2 – rI2) (6)

其中:

rO表示外徑。

rI表示內(nèi)徑。

外徑為0.006英寸,內(nèi)徑為0.0053英寸時,計算得出的面積為0.00002485 in2。通孔的長度為板的厚度(0.01英寸),銅的熱導(dǎo)率為10.008 W/inK。

? (7)

因為并排存在5個通孔,所以熱阻要除以5。所以,θVIACU = 8.05°C/W。

以相似方式計算得出通孔的填塞焊料的值。

?? (8)

因為存在5個填塞通孔,所以等效熱阻為θVIASN63 = 17.85°C/W。

接下來,使用0.01英寸長度、0.016 W/inK的Rogers RO4350熱導(dǎo)率,以及0.00366 in2面積計算PCB的熱阻。

?? (9)

在圖2所示的等效熱電路中,三個熱阻(θPCB、θVIACU和θVIASN63)并聯(lián)組合之后為5.37°C/W。在通孔中填塞焊料之后,熱阻從8.05°C/W降低至5.37°C/W。最后,加上熱阻串聯(lián)的值,可以得出整個PCB總成的熱阻。

θASSY = θSN63 + θCU + θEQUIV + θCU = 0.372 + 0.038 + 5.37 + 0.038 = 5.81°C/W (10)

其中,θASSY表示總成的熱阻。

確定功耗

熱阻值確定后,必須確定熱流(Q)值。對于RF器件,Q的值表示輸入器件的總功率和器件輸出的總功率之間的差值??偣β拾≧F功率和直流功率。

Q = PINTOTAL ? POUTTOTAL = (PINRF + PINDC) ? POUTRF (11)

其中:

PINTOTAL表示直流功率和RF輸入功率之和。

POUTTOTAL表示器件輸出的功率,與POUTRF相同。

PINRF表示RF輸入功率。

PINDC表示直流輸入功率。

POUTRF表示傳輸至負(fù)載的RF輸出功率。

圖4.HMC408LP3功耗與輸入功率

對于HMC408LP3功率放大器,使用公式11來計算圖4中所示的PDISS的值。圖4顯示了放大器的以下特性:

? 器件消耗約4 W功率,無RF輸入信號。

? 采用RF信號時,PDISS的值由頻率決定。

? 存在某一個輸入功率,器件的功耗最低。

根據(jù)等效熱阻、θTOTAL和Q,可以使用以下公式計算得出結(jié)溫

ΔT = Q × θTOTAL (12)

θTOTAL = θASSY + θJC = 5.81 + 13.79 = 19.6°C/W (13)

對于無RF輸入功率的靜止?fàn)顟B(tài),Q = 4 W,且

?T = 4.0 × 19.6 = 78.4°C (14)

因為指定的HMC408LP3的最大結(jié)溫為150°C,所以在PDISS = 4 W時,散熱器的溫度必須≤71.6°C(也就是說,78.4°C + 71.6°C = 150°C)。

HMC408LP3功率放大器正常運行時(例如,輸入功率≤ 5 dBm),功耗小于4 W,這表示散熱器的溫度可以稍微高于71.6°C。但是,如果放大器在深度壓縮環(huán)境中工作,且輸入功率等效于15 dBm,則PDISS升高,且要求散熱器的溫度低于71.6°C。

表3.熱工作數(shù)據(jù)表

描述 單位 注釋
散熱器最高溫度 70 °C
θASSY 5.81 °C/W 從等效熱電路計算得出
θJC 13.79 °C/W 來自數(shù)據(jù)手冊
θTOTAL 19.6 °C/W 添加θASSY和θJC
Q 4.0 W
得出的結(jié)溫 148.4 °C 散熱器最高溫度 + (θTOTAL × Q);不超過數(shù)據(jù)手冊中列出的最大通道溫度


可靠性

組件的預(yù)期壽命與工作溫度密切相關(guān)。在低于最大結(jié)溫的溫度下運行可以延長器件的使用壽命。超過最大結(jié)溫會縮短使用壽命。因此,實施熱分析可以確保在預(yù)期的操作條件下不會超過指定的最大結(jié)溫。

結(jié)論

使用采用LFCSP和法蘭封裝的低結(jié)溫表貼RF功率放大器來圍裝熱阻迫使PCB不僅要充當(dāng)器件之間的RF互連,還要用作導(dǎo)熱路徑以導(dǎo)走功率放大器的熱量。

因此,θJC 取代θJA,成為衡量LFCSP或法蘭封裝的重要熱阻指標(biāo)。

在這些計算中,最關(guān)鍵的指標(biāo)是RF放大器的結(jié)溫或通道溫度(TJ)。只要不超過最大結(jié)溫,那么其他標(biāo)稱限值,例如TCASE,則可以高于限值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 射頻
    +關(guān)注

    關(guān)注

    106

    文章

    5753

    瀏覽量

    170335
  • 封裝
    +關(guān)注

    關(guān)注

    128

    文章

    8651

    瀏覽量

    145385
  • LFCSP
    +關(guān)注

    關(guān)注

    1

    文章

    18

    瀏覽量

    14711
  • RF放大器
    +關(guān)注

    關(guān)注

    0

    文章

    30

    瀏覽量

    3741
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    Analog Devices Inc. ADL8140低噪聲放大器數(shù)據(jù)手冊

    ~DD~ ) 調(diào)節(jié)至35mA。ADL8140放大器的輸入/輸出也采用交流耦合,內(nèi)部匹配為50Ω。這款放大器符合RoHS規(guī)范,采用2mm x 2mm 8引線框架芯片級
    的頭像 發(fā)表于 05-29 14:05 ?209次閱讀
    Analog Devices Inc. ADL8140低噪聲<b class='flag-5'>放大器</b>數(shù)據(jù)手冊

    Analog Devices Inc. ADL8108低噪聲放大器數(shù)據(jù)手冊

    。ADL8108放大器提供穩(wěn)健的輸入和輸出匹配,阻抗為50Ω 。這些放大器采用16引線 LFCSP緊湊型封裝,專為在高頻環(huán)境中實現(xiàn)熱效率和可
    的頭像 發(fā)表于 05-27 14:47 ?221次閱讀
    Analog Devices Inc. ADL8108低噪聲<b class='flag-5'>放大器</b>數(shù)據(jù)手冊

    HMC480 InGaP HBT增益模塊放大器,采用SMT封裝,DC-5GHz技術(shù)手冊

    HMC480ST89(E)是一款I(lǐng)nGaP HBT增益模塊MMIC SMT放大器,在DC至5 GHz的頻率下工作,采用行業(yè)標(biāo)準(zhǔn)SOT89封裝。 該放大器能夠用作可級聯(lián)50 Ohm
    的頭像 發(fā)表于 03-20 13:54 ?360次閱讀
    HMC480 InGaP HBT增益模塊<b class='flag-5'>放大器</b>,<b class='flag-5'>采用</b>SMT<b class='flag-5'>封裝</b>,DC-5GHz技術(shù)手冊

    HMC342LC4低噪聲放大器采用SMT封裝,13-25GHz技術(shù)手冊

    HMC342LC4是一款GaAs PHEMT MMIC低噪音放大器采用符合RoHS標(biāo)準(zhǔn)的無引腳4x4 mm SMT封裝。 該放大器的工作頻率范圍為13至25 GHz,
    的頭像 發(fā)表于 03-20 09:21 ?313次閱讀
    HMC342LC4低噪聲<b class='flag-5'>放大器</b>,<b class='flag-5'>采用</b>SMT<b class='flag-5'>封裝</b>,13-25GHz技術(shù)手冊

    HMC341LC3B低噪聲放大器,采用SMT封裝,21-29GHz技術(shù)手冊

    HMC341LC3B是一款GaAs PHEMT MMIC低噪音放大器,采用符合RoHS標(biāo)準(zhǔn)的無引腳SMT封裝。 該放大器的工作頻率范圍為21至29 GHz,
    的頭像 發(fā)表于 03-19 16:17 ?378次閱讀
    HMC341LC3B低噪聲<b class='flag-5'>放大器</b>,<b class='flag-5'>采用</b>SMT<b class='flag-5'>封裝</b>,21-29GHz技術(shù)手冊

    HMC1087F10 8W GaN法蘭貼裝MMIC功率放大器技術(shù)手冊

    HMC1087F10是一款8W氮化鎵(GaN) MMIC功率放大器,工作頻率范圍為2至20 GHz,采用10引腳法蘭貼裝封裝。 該放大器通常
    的頭像 發(fā)表于 03-19 15:13 ?355次閱讀
    HMC1087F10 8W GaN<b class='flag-5'>法蘭</b>貼裝MMIC功率<b class='flag-5'>放大器</b>技術(shù)手冊

    HMC1086F10 25W GaN MMIC功率放大器技術(shù)手冊

    HMC1086F10是一款25W氮化鎵(GaN) MMIC功率放大器,工作頻率范圍為2至6 GHz,采用10引腳法蘭貼裝封裝。 該放大器通常
    的頭像 發(fā)表于 03-19 15:05 ?372次閱讀
    HMC1086F10 25W GaN MMIC功率<b class='flag-5'>放大器</b>技術(shù)手冊

    RF3932D寬帶放大器現(xiàn)貨庫存RF-LAMBDA

    制造工藝,RF3932D高性能放大器在單一放大器設(shè)計中實現(xiàn)在寬頻率范圍內(nèi)的高效化和平整增益值。RF3932D是款前所未有的GaN晶體管,選用法蘭
    發(fā)表于 01-22 09:03

    高頻功率放大器設(shè)計流程

    高頻功率放大器是無線通信系統(tǒng)中的關(guān)鍵組件,負(fù)責(zé)將低功率信號放大到足夠的功率水平,以便在無線信道中傳輸。設(shè)計一個高頻功率放大器需要考慮多個因素,包括頻率范圍、功率輸出、效率、線性度和熱管理
    的頭像 發(fā)表于 10-29 14:49 ?1298次閱讀

    高頻功率放大器熱管理措施

    在現(xiàn)代電子設(shè)備中,高頻功率放大器(HPA)是實現(xiàn)信號放大的關(guān)鍵組件。然而,隨著功率的增加,HPA產(chǎn)生的熱量也隨之增加,這不僅影響設(shè)備的性能,還可能導(dǎo)致設(shè)備損壞或故障。因此,對HPA進(jìn)行有效的熱管理
    的頭像 發(fā)表于 10-29 14:40 ?615次閱讀

    如何使用LMG1210優(yōu)化RF放大器性能

    電子發(fā)燒友網(wǎng)站提供《如何使用LMG1210優(yōu)化RF放大器性能.pdf》資料免費下載
    發(fā)表于 09-19 11:14 ?1次下載
    如何使用LMG1210優(yōu)化<b class='flag-5'>RF</b><b class='flag-5'>放大器</b>性能

    互阻放大器采用什么反饋

    互阻放大器(TIA)采用的反饋方式主要是 并聯(lián)-并聯(lián)反饋 ,也稱為電流混合電壓采樣拓?fù)浣Y(jié)構(gòu)。在這種反饋結(jié)構(gòu)中,輸入信號是電流信號,輸出信號為電壓信號。具體來說,互阻放大器的反饋機(jī)制通過反饋電阻(或
    的頭像 發(fā)表于 09-05 14:38 ?811次閱讀

    誤差放大器的輸出電壓如何計算?

    運放供電是單電源的,+12V,GND. 請問這個誤差放大器的,輸出電壓怎么計算
    發(fā)表于 08-30 13:29

    單級小信號 RF 放大器設(shè)計

    本文要點小信號RF放大器的用途。用于小信號RF放大器的分壓器晶體管偏置電路。單級小信號RF放大器
    的頭像 發(fā)表于 08-30 12:20 ?784次閱讀
    單級小信號 <b class='flag-5'>RF</b> <b class='flag-5'>放大器</b>設(shè)計

    LM358在多放大器封裝中,如何處理任何未使用的放大器?

    如果您的設(shè)計使用多放大器封裝(雙通道、四通道),您可能會發(fā)現(xiàn)某些放大器未使用。在這種情況下,應(yīng)該怎么辦?
    發(fā)表于 08-05 08:18