一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

開源機器學(xué)習(xí)平臺TensorFlow的更新內(nèi)容

汽車玩家 ? 來源:開源中國 ? 作者:xplanet ? 2020-03-15 14:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

TensorFlow 2.2.0-rc0已發(fā)布,據(jù)官方介紹,TensorFlow 是一個采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計算的開源軟件庫。節(jié)點(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺上展開計算,例如臺式計算機中的一個或多個CPU(或GPU),服務(wù)器,移動設(shè)備等等。TensorFlow 最初由Google大腦小組(隸屬于Google機器智能研究機構(gòu))的研究員和工程師們開發(fā)出來,用于機器學(xué)習(xí)和深度神經(jīng)網(wǎng)絡(luò)方面的研究,但這個系統(tǒng)的通用性使其也可廣泛用于其他計算領(lǐng)域。

更新內(nèi)容如下:

主要特性和改進

將字符串張量的標(biāo)量類型從std::string替換為tensorflow::tstring

TF 2 的新 Profiler,用于 CPU/GPU/TPU。它提供設(shè)備和主機性能分析,包括輸入管道和 TF Ops。

不推薦使用 SWIG,而是使用 pybind11 將 C++ 函數(shù)導(dǎo)出到 Python,這是棄用 Swig 所作努力的一部分。

tf.distribute:

tf.keras:

tf.lite:

XLA

將 NVIDIA NCCL 更新到 2.5.7-1,以獲得更好的性能和性能調(diào)整。

支持在 float16 中減少梯度。

所有實驗的支持都減少了梯度壓縮,以允許使用反向路徑計算進行重疊梯度聚合。

通過使用新添加的 tf.keras.layers.experimental.SyncBatchNormalization 層,添加了對全局同步 BatchNormalization 的支持。該層將在參與同步訓(xùn)練的所有副本之間同步 BatchNormalization 統(tǒng)計信息。

使用 tf.distribute.experimental.MultiWorkerMirroredStrategy 提高 GPU 多工分布式培訓(xùn)的性能

可以通過覆蓋 Model.train_step 將自定義訓(xùn)練邏輯與 Model.fit 結(jié)合使用。

輕松編寫最新的培訓(xùn)循環(huán),而不必擔(dān)心 Model.fit 為你處理的所有功能(分發(fā)策略,回調(diào),數(shù)據(jù)格式,循環(huán)邏輯等)

Model.fit的主要改進:

現(xiàn)在,SavedModel 格式支持所有 Keras 內(nèi)置層(包括指標(biāo),預(yù)處理層和有狀態(tài) RNN 層)

默認情況下啟用 TFLite 實驗性新轉(zhuǎn)換器。

XLA 現(xiàn)在可以在 Windows 上構(gòu)建并運行。所有預(yù)構(gòu)建的軟件包都隨附有 XLA。

可以在 CPU 和 GPU 上使用“編譯或拋出異?!闭Z義為 tf.function 啟用 XLA。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8502

    瀏覽量

    134592
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    330

    瀏覽量

    61173
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    開源電機驅(qū)動,免費直播學(xué)習(xí)!

    開源電機驅(qū)動,免費直播學(xué)習(xí)!
    的頭像 發(fā)表于 06-13 10:07 ?487次閱讀
    <b class='flag-5'>開源</b>電機驅(qū)動,免費直播<b class='flag-5'>學(xué)習(xí)</b>!

    盤點#機器人開發(fā)平臺

    Athena機器人****開發(fā)平臺思嵐推出Athena機器人開發(fā)平臺,有望主導(dǎo)機器人開發(fā)平臺未來
    發(fā)表于 05-13 15:02

    大象機器人攜手進迭時空推出 RISC-V 全棧開源六軸機械臂產(chǎn)品

    全球80多個國家和地區(qū)。 近日,大象機器人聯(lián)合進迭時空推出全球首款RISC-V全棧開源六軸機器臂“myCobot 280 RISC-V”,為開發(fā)者打造全新的機器
    發(fā)表于 04-25 17:59

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?440次閱讀
    用樹莓派搞深度<b class='flag-5'>學(xué)習(xí)</b>?<b class='flag-5'>TensorFlow</b>啟動!

    深度解讀英偉達Newton機器人平臺:技術(shù)革新與跨界生態(tài)構(gòu)建

    Newton是由NVIDIA、Google DeepMind和Disney Research開發(fā)的開源、可擴展的物理引擎,旨在推進機器人學(xué)習(xí)和開發(fā)。 Newton建立在 NVIDIA Warp
    的頭像 發(fā)表于 03-20 15:15 ?1725次閱讀
    深度解讀英偉達Newton<b class='flag-5'>機器人平臺</b>:技術(shù)革新與跨界生態(tài)構(gòu)建

    開源項目!教你如何制作一個開源教育機械臂

    和適應(yīng)性強的機器人平臺。 作為一個開源項目,構(gòu)建Pedro所需的所有文件都可以在Pedro Github頁面上找到: 用于3D打印和定制的STL文件。 Gerber文件來制造您自己的Pedro板
    發(fā)表于 03-10 11:22

    開源mlops平臺好用嗎

    在MLOps平臺的選擇上,開源平臺因其成本效益、靈活性以及社區(qū)支持等優(yōu)勢,受到了越來越多開發(fā)者和企業(yè)的青睞。那么,開源MLOps平臺真的好用
    的頭像 發(fā)表于 03-05 11:09 ?335次閱讀

    靈汐科技開源類腦深度學(xué)習(xí)應(yīng)用開發(fā)平臺BIDL

    富案例等問題,一直制約著其廣泛應(yīng)用。為了突破這一瓶頸,靈汐科技聯(lián)合腦啟社區(qū)正式宣布開源類腦深度學(xué)習(xí)應(yīng)用開發(fā)平臺BIDL(Brain-inspired Deep Learning)。
    的頭像 發(fā)表于 03-05 09:13 ?916次閱讀
    靈汐科技<b class='flag-5'>開源</b>類腦深度<b class='flag-5'>學(xué)習(xí)</b>應(yīng)用開發(fā)<b class='flag-5'>平臺</b>BIDL

    開源大模型DeepSeek的開放內(nèi)容詳析

    當(dāng)大家討論為什么 DeepSeek 能夠形成全球刷屏之勢,讓所有廠商、平臺都集成之時,「開源」成為了最大的關(guān)鍵詞之一,圖靈獎得主 Yann LeCun 稱其是「開源的勝利」。模型開源
    的頭像 發(fā)表于 02-19 09:48 ?1446次閱讀
    <b class='flag-5'>開源</b>大模型DeepSeek的開放<b class='flag-5'>內(nèi)容</b>詳析

    如何選擇云原生機器學(xué)習(xí)平臺

    當(dāng)今,云原生機器學(xué)習(xí)平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機器學(xué)習(xí)應(yīng)用的首選。然而,市場上的云原生
    的頭像 發(fā)表于 12-25 11:54 ?454次閱讀

    構(gòu)建云原生機器學(xué)習(xí)平臺流程

    構(gòu)建云原生機器學(xué)習(xí)平臺是一個復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)收集、處理、特征提取、模型訓(xùn)練、評估、部署和監(jiān)控等多個環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?431次閱讀

    【「嵌入式系統(tǒng)設(shè)計與實現(xiàn)」閱讀體驗】全書概覽與內(nèi)容簡介

    《嵌入式系統(tǒng)設(shè)計與實現(xiàn)》,瞬間就被吸引了。非常感謝電子發(fā)燒友平臺提供這次寶貴機會,讓我有機會接觸到這么多優(yōu)秀的設(shè)計案例。 今天剛收到書籍,接下來讓我們一起先大概瀏覽一下這本書的內(nèi)容吧! 內(nèi)容簡介 本書
    發(fā)表于 12-01 17:05

    NPU與機器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計目標(biāo)是提高機器學(xué)習(xí)算法的運行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1214次閱讀

    使用機器學(xué)習(xí)和NVIDIA Jetson邊緣AI和機器人平臺打造機器人導(dǎo)盲犬

    Selin Alara Ornek 是一名富有遠見的高中生。她使用機器學(xué)習(xí)和 NVIDIA Jetson 邊緣 AI 和機器人平臺,為視障人士打造了機器人導(dǎo)盲犬。 該項目名為 I
    的頭像 發(fā)表于 11-08 10:05 ?804次閱讀

    第四章:在 PC 交叉編譯 aarch64 的 tensorflow 開發(fā)環(huán)境并測試

    本文介紹了在 PC 端交叉編譯 aarch64 平臺tensorflow 庫而非 tensorflow lite 的心酸過程。
    的頭像 發(fā)表于 08-25 11:38 ?2596次閱讀
    第四章:在 PC 交叉編譯 aarch64 的 <b class='flag-5'>tensorflow</b> 開發(fā)環(huán)境并測試