一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過TensorFlow游樂場來了解神經(jīng)網(wǎng)絡(luò)

倩倩 ? 來源:私地創(chuàng)造空間 ? 2020-04-17 14:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

TensorFlow游樂場是一個(gè)通過網(wǎng)頁瀏覽器就可以訓(xùn)練的簡單神經(jīng)網(wǎng)絡(luò)并實(shí)現(xiàn)了可視化訓(xùn)練過程的工具。這個(gè)網(wǎng)頁在百度上,只要搜索TensorFlow playground基本都能出來。

TensorFlow游樂場界面

最左側(cè)提供了4個(gè)不同的數(shù)據(jù)集來測試神經(jīng)網(wǎng)絡(luò),默認(rèn)的是選中的第一個(gè)。最右面的大圖也是顯示被選中的數(shù)據(jù)集。在這個(gè)數(shù)據(jù)中,可以看到一個(gè)二維平面上有藍(lán)點(diǎn)和橘點(diǎn),每個(gè)小點(diǎn)代表了一個(gè)樣例,而點(diǎn)的顏色代表了樣例的標(biāo)簽。因?yàn)辄c(diǎn)的顏色只有兩種,所以這是一個(gè)二分類的問題。

訓(xùn)練129輪后的結(jié)果

一個(gè)小格子代表神經(jīng)網(wǎng)絡(luò)中的一個(gè)節(jié)點(diǎn),而邊代表節(jié)點(diǎn)之間的連接。每一個(gè)節(jié)點(diǎn)和邊都被涂上了顏色,但邊上的顏色和格子中的顏色含義有略微的區(qū)別。每一條邊代表了神經(jīng)網(wǎng)絡(luò)中的一個(gè)參數(shù),它可以是任意實(shí)數(shù)。如果把這個(gè)平面當(dāng)成一個(gè)卡迪爾坐標(biāo)系,這個(gè)平面的每一個(gè)點(diǎn)就代表了(x1,x2)的一種取值。而這個(gè)點(diǎn)的顏色就體現(xiàn)了這種取值下這個(gè)節(jié)點(diǎn)的輸出值。

綜合所述,使用神經(jīng)網(wǎng)絡(luò)解決分類問題主要可以分為以下4個(gè)步驟。

提取問題中實(shí)體的特征向量作為神經(jīng)網(wǎng)絡(luò)的輸入

定義神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),并定義如何從神經(jīng)網(wǎng)絡(luò)的輸入得到輸出。

通過訓(xùn)練數(shù)據(jù)來調(diào)整神經(jīng)網(wǎng)絡(luò)中的參數(shù)的取值,這就是訓(xùn)練神經(jīng)網(wǎng)絡(luò)的過程。

使用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)來預(yù)測未知的數(shù)據(jù)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103643
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25449
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    330

    瀏覽量

    61183
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:36 ?925次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計(jì)算每層網(wǎng)絡(luò)的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?774次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負(fù)責(zé)接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過一層或多層神經(jīng)元對輸入數(shù)據(jù)進(jìn)行加權(quán)求和,并通過非線性
    的頭像 發(fā)表于 02-12 15:13 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network),是一種多層前饋神經(jīng)網(wǎng)絡(luò),主要通過反向傳播算法進(jìn)行學(xué)習(xí)。它通常包括輸入層、一個(gè)或多個(gè)隱藏層和輸出層。BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?680次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1203次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks, FNN),是一種最簡單的人工
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    的結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)主要包括以下幾個(gè)部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網(wǎng)絡(luò)的核心,負(fù)責(zé)在整個(gè)序列處理過程中保持和更新長期依賴信息。 它主要由
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時(shí)存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1217次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    Python自動訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機(jī)器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(diǎn)(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學(xué)習(xí)和解決問題。Python由于其強(qiáng)大的庫支持(如
    的頭像 發(fā)表于 07-19 11:54 ?703次閱讀