一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

整個神經網絡的架構,只要能理解這個

倩倩 ? 來源:CSDN學院 ? 2020-04-17 14:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

今天我們來討論當下最熱門的神經網絡,現在深度學習炒的非常火,其實本質還是把神經網絡算法進行了延伸和優(yōu)化!咱們這回的目標就直入主題用最簡單的語言讓大家清楚神經網絡究竟是個什么東西。關于神經網絡與人工智能的發(fā)展,以及神經網絡各種生物學模型咱們就不嘮了,我是覺得把神經網絡比作各種類人腦模型和生物學模型沒有半點助于咱們理解,反而把簡單的問題復雜了,這些恩怨情仇咱們就不過多介紹了!

這張圖就是我們的核心了,也是整個神經網絡的架構,只要能理解這個,那就OK了!首先我們來觀察整個結構,發(fā)現在神經網絡中是存在多個層的,有輸入層,隱層1,隱層2,輸出層。那么我們想要得到一個合適的結果,就必須通過這么多層得到最終的結果,在這里咱們先來考慮一個問題,神經網絡究竟做了一件什么事?

如果你想做一個貓狗識別,大家首先想到了神經網絡,那它是怎么做的呢?先來想想咱們人類是怎么分辨的,是不是根據貓和狗的特征是不一樣的,所以我們可以很輕松就知道什么事貓什么是狗。既然這樣,神經網絡要做的事跟咱們一樣,它也需要知道貓的特征是什么,狗的特征是什么,這么多的層次結構其實就做了一件事,進行特征提取,我們希望網絡結構能更好的識別出來我們想要的結果,那勢必需要它們能提取處最合適的特征,所以神經網絡的強大之處就在于它可以幫助我們更好的選擇出最恰當的特征。

在第一張圖中我們定義了多層的結構,在這里有一個概念叫做神經元,那么神經元真的存在嗎?像大腦一樣?其實就是一個權重參數矩陣,比如你有一個輸入數據。它是由3個特征組成的,我們就說輸入是一個batchsize*3的矩陣,(batchsieze是一次輸入的數據量大?。?,那既然要對輸入提取特征,我們就需要權重參數矩陣W了,在圖中神經元的意思就是我們要把這個3個特征如何變幻才能得到更好的信息表達,比如中間的第一個隱層有4個神經元,那么我們需要的第一個權重參數矩陣W1就是3 * 4,表示通過矩陣鏈接后得到的是batchsize * 4的特征,也就是說我們將特征進行的變換,看起來好像是從3變到了4只增加了一個,但是我們的核心一方面是特征的個數,這個我們可以自己定義神經元的個數。另一方面我們關注的點在于,什么樣的權重參數矩陣W1才能給我得到更好的特征,那么神經網絡大家都說它是一個黑盒子,原因就在于權重參數矩陣W1內部是很難解釋的,其實我們也不需要認識它,只要計算機能懂就OK了。那么這一步是怎么做的呢?計算機怎么得到最好的權重參數W1幫我們完成了特征的提取呢?這一點就要靠反向傳播與梯度下降了,簡單來說就是我們告訴神經網絡我的目標就是分辨出什么是貓什么是狗,然后神經網絡就會通過大量的迭代去尋找最合適的一組權重參數矩陣。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103639
  • 人工智能
    +關注

    關注

    1807

    文章

    49029

    瀏覽量

    249572
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122799
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    如何優(yōu)化BP神經網絡的學習率

    優(yōu)化BP神經網絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經網絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數在每次迭代時更新的幅度。過大的學習率可能導致模型在
    的頭像 發(fā)表于 02-12 15:51 ?941次閱讀

    BP神經網絡的優(yōu)缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?924次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?773次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經網絡的基本原理

    BP神經網絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經網絡基本原理的介紹: 一、網絡結構 BP神經網絡
    的頭像 發(fā)表于 02-12 15:13 ?858次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1202次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b><b class='flag-5'>架構</b>方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經網絡
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統神經網絡的區(qū)別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經網絡的類型也在不斷增加,其中循環(huán)神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經網絡的結構與工作機制

    的結構與工作機制的介紹: 一、LSTM神經網絡的結構 LSTM神經網絡的結構主要包括以下幾個部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網絡的核心,負責在整個序列
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經網絡與傳統RNN的區(qū)別

    在深度學習領域,循環(huán)神經網絡(RNN)因其能夠處理序列數據而受到廣泛關注。然而,傳統RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經網絡應運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1216次閱讀

    LSTM神經網絡的基本原理 如何實現LSTM神經網絡

    LSTM(長短期記憶)神經網絡是一種特殊的循環(huán)神經網絡(RNN),它能夠學習長期依賴信息。在處理序列數據時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    Moku人工神經網絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經網絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調節(jié)校準、閉環(huán)反饋等應用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    關于卷積神經網絡,這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復雜模式就是其應用之一。 1、什么是卷積神經網絡? 神經網絡是一種由神經元組成的系統或結構,它使AI能夠更好地理解數據,進而解決復雜問
    發(fā)表于 10-24 13:56

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發(fā)表于 09-18 15:14