一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

MIT宣布新型神經(jīng)網(wǎng)絡(luò)芯片功耗降低95%

倩倩 ? 來源:網(wǎng)易智能 ? 2020-04-17 15:03 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

神經(jīng)網(wǎng)絡(luò)非常強(qiáng)大,但是它們需要大量的能量。麻省理工學(xué)院的工程師們現(xiàn)開發(fā)出了一種新的芯片,可以將神經(jīng)網(wǎng)絡(luò)的功耗降低95%,這也許會使得其可在電池驅(qū)動的移動設(shè)備上運(yùn)行。

如今智能手機(jī)正變得越來越智能,提供了越來越多的人工智能服務(wù),如數(shù)字助理和實(shí)時翻譯。但是,為這些服務(wù)進(jìn)行數(shù)據(jù)運(yùn)算的神經(jīng)網(wǎng)絡(luò)通常都在云端,智能手機(jī)的數(shù)據(jù)也是在云端來回傳輸。

這并不是一種理想的狀態(tài),因?yàn)檫@需要大量的通信帶寬,并且這意味著潛在的敏感數(shù)據(jù)正在被傳輸并存儲在不受用戶控制的服務(wù)器上。但是,圖形處理器的神經(jīng)網(wǎng)絡(luò)正常運(yùn)行需要大量的能量,這使得在電池電量有限的設(shè)備上運(yùn)行神經(jīng)網(wǎng)絡(luò)不切實(shí)際。

麻省理工學(xué)院的工程師們現(xiàn)在已經(jīng)設(shè)計出了一種芯片,可以大幅降低芯片內(nèi)存和處理器之間來回傳輸數(shù)據(jù)的需求,從而降低95%的功耗。神經(jīng)網(wǎng)絡(luò)由成千上萬個一層層相互連接的人工神經(jīng)元組成。每個神經(jīng)元接收來自其下一層的多個神經(jīng)元的輸入,并且如果這一組合輸入通過了一個特定的閾值,它就會將輸出傳送到上層的多個神經(jīng)元上。神經(jīng)元之間的連接強(qiáng)度是由在訓(xùn)練期間設(shè)定的權(quán)重控制的。

這意味著,對于每個神經(jīng)元,芯片必須檢索特定連接的輸入數(shù)據(jù)和來自內(nèi)存的連接權(quán)重,將它們相乘,存儲結(jié)果,然后在每一次輸入時重復(fù)這個過程。這需要大量的數(shù)據(jù)移動,也因此需要消耗大量的能量。麻省理工學(xué)院的新芯片另辟蹊徑,使用模擬電路,在內(nèi)存中并行計算所有輸入。這大大減少了需要被推進(jìn)的數(shù)據(jù)量,并最終能節(jié)省大量的能源。這種方法要求連接的權(quán)重為二進(jìn)制而不是一系列的值,但是先前的理論工作表明這不會對芯片的準(zhǔn)確性造成太大影響,研究人員發(fā)現(xiàn)芯片的結(jié)果基本上包括在標(biāo)準(zhǔn)計算機(jī)上運(yùn)行的傳統(tǒng)非二進(jìn)制神經(jīng)網(wǎng)絡(luò)的2%到3%之內(nèi)。

這并不是研究人員第一次在內(nèi)存中創(chuàng)建處理數(shù)據(jù)的芯片,以減少神經(jīng)網(wǎng)絡(luò)的功耗,但這是第一次使用這種方法來運(yùn)行基于圖像的人工智能應(yīng)用程序的強(qiáng)大的卷積神經(jīng)網(wǎng)絡(luò)。IBM人工智能副總裁達(dá)里奧·吉爾在一份聲明中說:“研究結(jié)果顯示,在使用內(nèi)存陣列進(jìn)行卷積運(yùn)算時,它的性能令人印象深刻。它肯定會為未來物聯(lián)網(wǎng)的圖像和視頻分類提供更復(fù)雜的卷積神經(jīng)網(wǎng)絡(luò)?!?/p>

然而,不僅僅是研究小組在研究這個問題。讓智能手機(jī)、家用電器、各種物聯(lián)網(wǎng)設(shè)備等設(shè)備搭載人工智能的愿望,正驅(qū)使著硅谷的大佬們紛紛轉(zhuǎn)戰(zhàn)低功耗人工智能芯片。

蘋果已經(jīng)將其Neural Engine芯片整合到iPhone X中,以增強(qiáng)其面部識別技術(shù)等功能。據(jù)傳,亞馬遜正在為下一代Echo數(shù)字助手開發(fā)自己的定制AI芯片。大型芯片公司也越來越傾向于支持像機(jī)器學(xué)習(xí)這樣的高級功能,這也迫使他們讓設(shè)備升級,變得更加節(jié)能。今年早些時候,ARM公司推出了兩款新芯片:ARM機(jī)器學(xué)習(xí)處理器,這一款芯片主要針對人工智能任務(wù),從翻譯到面部識別,另一款則是用于檢測圖像中人臉的ARM對象檢測處理器。

高通最新推出的移動芯片驍龍845配備了圖形處理器,并且將人工智能視為重中之重。該公司還發(fā)布了驍龍820E芯片,主要面向的是無人機(jī)、機(jī)器人和工業(yè)設(shè)備。從更長遠(yuǎn)來說,IBM和英特爾正在開發(fā)一種神經(jīng)形態(tài)芯片,其架構(gòu)是從人類大腦和其驚人的能量效率啟發(fā)而來。從理論上講,這可以讓IBM的TrueNorth芯片和英特爾的Loihi芯片僅花費(fèi)傳統(tǒng)芯片所需要的能量的一小部分,便可運(yùn)行強(qiáng)大的機(jī)器學(xué)習(xí),不過在現(xiàn)階段,這兩種技術(shù)仍處于高度實(shí)驗(yàn)階段。

讓這些芯片運(yùn)行與云計算服務(wù)一樣強(qiáng)大的神經(jīng)網(wǎng)絡(luò)將是一個巨大的挑戰(zhàn)。但以目前的創(chuàng)新速度來看,離你觸手可及真正的人工智能的那一天不會太久。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 處理器
    +關(guān)注

    關(guān)注

    68

    文章

    19881

    瀏覽量

    234828
  • 芯片
    +關(guān)注

    關(guān)注

    459

    文章

    52452

    瀏覽量

    439960
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103436
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    摘要:針對傳統(tǒng)專家系統(tǒng)不能進(jìn)行自學(xué)習(xí)、自適應(yīng)的問題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機(jī)故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合,充分發(fā)揮了二者故障診斷的優(yōu)點(diǎn),很大程度上降低了對電機(jī)
    發(fā)表于 06-16 22:09

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?644次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?841次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1174次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1838次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1114次閱讀

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點(diǎn)

    的基本概念、原理、特點(diǎn)以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)算法,它由多層卷積層和池化層堆疊而成。卷積層負(fù)責(zé)提取圖像中的局部特征,而池化層則負(fù)責(zé)降低特征的空間維度,同時增加對圖像位移的
    的頭像 發(fā)表于 07-11 14:38 ?2440次閱讀

    神經(jīng)網(wǎng)絡(luò)辨識模型具有什么特點(diǎn)

    神經(jīng)網(wǎng)絡(luò)辨識模型是一種基于人工神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識方法,它具有以下特點(diǎn): 非線性映射能力 :神經(jīng)網(wǎng)絡(luò)能夠處理非線性問題,可以很好地擬合復(fù)雜的非線性系統(tǒng)。 泛化能力 :神經(jīng)網(wǎng)絡(luò)通過學(xué)習(xí)大量
    的頭像 發(fā)表于 07-11 11:12 ?871次閱讀

    什么是神經(jīng)網(wǎng)絡(luò)加速器?它有哪些特點(diǎn)?

    )和圖形處理器(GPU)雖然可以處理神經(jīng)網(wǎng)絡(luò)計算,但在能效比和計算密度上往往難以滿足特定應(yīng)用場景的需求。因此,神經(jīng)網(wǎng)絡(luò)加速器應(yīng)運(yùn)而生,它通過優(yōu)化硬件架構(gòu)和算法實(shí)現(xiàn),針對神經(jīng)網(wǎng)絡(luò)計算的特點(diǎn)進(jìn)行定制化設(shè)計,以達(dá)到更高的計算效率和更低
    的頭像 發(fā)表于 07-11 10:40 ?989次閱讀

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)是一個復(fù)雜的過程,涉及到多個步驟和考慮因素。 引言 神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、自然語言處理、語音識別等領(lǐng)域。然而,隨著時間的推移,數(shù)據(jù)分布可能會
    的頭像 發(fā)表于 07-11 10:25 ?853次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)

    遞歸神經(jīng)網(wǎng)絡(luò)是一種旨在處理分層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),使其特別適合涉及樹狀或嵌套數(shù)據(jù)的任務(wù)。這些網(wǎng)絡(luò)明確地模擬了層次結(jié)構(gòu)中的關(guān)系和依賴關(guān)系,例如語言中的句法結(jié)構(gòu)或圖像中的層次表示。它使用遞歸操作來分層處理信息,有效地捕獲上下文信息。
    的頭像 發(fā)表于 07-10 17:21 ?1274次閱讀
    遞歸<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>和循環(huán)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的模型結(jié)構(gòu)

    遞歸神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)方法

    遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,簡稱RNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),其特點(diǎn)在于能夠處理具有層次或樹狀結(jié)構(gòu)的數(shù)據(jù),并通過遞歸的方式對這些數(shù)據(jù)進(jìn)行建模。與循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-10 17:02 ?776次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?2440次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?2268次閱讀