一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

在深度學(xué)習(xí)可以更廣泛地應(yīng)用之前,必須解決重大挑戰(zhàn)

倩倩 ? 來(lái)源:新經(jīng)網(wǎng) ? 2020-04-23 09:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)AI的重要元素,可幫助推進(jìn)診斷和治療,但它仍然是一個(gè)相對(duì)未知的領(lǐng)域。

該技術(shù)的第一作者Fei Wang博士和紐約Weill Cornell Medicine的同事在《JAMA Internal Medicine》上寫(xiě)道,迄今為止,該技術(shù)最成功的應(yīng)用是醫(yī)學(xué)成像。人工智能技術(shù)的其他應(yīng)用領(lǐng)域非常廣泛,但是科學(xué)家仍然面臨著巨大的障礙。

Wang和合著者說(shuō):“深度學(xué)習(xí)有可能解開(kāi)圖像中復(fù)雜的,微妙的區(qū)分模式,這表明這些技術(shù)可能在醫(yī)學(xué)的其他領(lǐng)域有用?!?“但是,在深度學(xué)習(xí)可以更廣泛地應(yīng)用之前,必須解決重大挑戰(zhàn)?!?/p>

Wang和他的團(tuán)隊(duì)認(rèn)為,這些是其中五個(gè)挑戰(zhàn):

1.我們可能沒(méi)有足夠的數(shù)據(jù)

Wang等人在深度學(xué)習(xí)模型中分別使用128,175張視網(wǎng)膜圖像和129,450張皮膚圖像來(lái)對(duì)糖尿病性視網(wǎng)膜病變和皮膚癌進(jìn)行分類。寫(xiě)道?!澳P偷膹?fù)雜性由問(wèn)題的復(fù)雜性決定”,這意味著更復(fù)雜或異構(gòu)的疾病可能需要大量我們尚未掌握的可靠數(shù)據(jù)。深度學(xué)習(xí)模型可能需要數(shù)以千萬(wàn)計(jì)的樣本才能為慢性心臟病或腎衰竭創(chuàng)建合適的診斷模型。

作者寫(xiě)道:“模型很復(fù)雜,設(shè)計(jì)其最佳架構(gòu)可能很困難?!?/p>

從電子健康記錄中確保數(shù)據(jù)的質(zhì)量也很困難,其中包含“高度異類,有時(shí)不一致”的患者信息,這可能會(huì)妨礙AI算法的準(zhǔn)確性。

2. AI模型產(chǎn)生結(jié)果,但沒(méi)有解釋

Wang和合著者說(shuō),典型的皮膚科醫(yī)生對(duì)黑色素瘤的檢測(cè)將評(píng)估一系列主要和次要標(biāo)準(zhǔn)的圖像,從而為診斷提供依據(jù)。接受過(guò)培訓(xùn)的深度學(xué)習(xí)模型可以做到這一點(diǎn),例如“該患者患有黑色素瘤的可能性為0.8”,但仍然難以為他們的結(jié)論提供清晰的解釋。

這組作者說(shuō),正在影像領(lǐng)域做出一些努力來(lái)改善這個(gè)問(wèn)題,但是他們承認(rèn)“一種僅表示診斷的深度學(xué)習(xí)模型可能會(huì)受到懷疑?!?/p>

3.創(chuàng)建通用模型很困難

該團(tuán)隊(duì)說(shuō),模型的偏見(jiàn)和互操作性使得很難設(shè)計(jì)可擴(kuò)展到其他人群,國(guó)家或系統(tǒng)的深度學(xué)習(xí)模型。如果主要對(duì)白人患者的數(shù)據(jù)進(jìn)行訓(xùn)練,那么該模型將難以為少數(shù)群體提供準(zhǔn)確的預(yù)測(cè)。同樣,在亞洲接受培訓(xùn)的模型在歐洲可能做得不好。

EHR的可變性也帶來(lái)了一個(gè)問(wèn)題,因?yàn)槭褂貌煌珽HR的兩個(gè)衛(wèi)生系統(tǒng)可能無(wú)法使用相同的AI算法。

4.我們需要更好的人工智能來(lái)開(kāi)發(fā)更好的數(shù)據(jù)

Wang等人說(shuō):“由于深度學(xué)習(xí)模型適合數(shù)據(jù),但對(duì)它們的處理過(guò)程卻知之甚少,因此可靠,高質(zhì)量的輸入很重要?!?寫(xiě)道?!皠?chuàng)建提高數(shù)據(jù)收集過(guò)程質(zhì)量的工具也很重要,例如糾錯(cuò),有關(guān)數(shù)據(jù)丟失的警告和差異的調(diào)和。”

作者提到了《 IBM Watson Imaging臨床評(píng)論》,該評(píng)論分析了臨床成像報(bào)告中的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),并將其與EHR中記錄的診斷進(jìn)行比較,以識(shí)別任何報(bào)告差異。

5.深度學(xué)習(xí)需要更多規(guī)范

Wang和同事寫(xiě)道,隨著AI,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)在醫(yī)學(xué)領(lǐng)域的普及,這些技術(shù)越來(lái)越受到計(jì)算機(jī)黑客的歡迎。盡管一些社會(huì)正在聯(lián)合起來(lái)提供有關(guān)AI倫理學(xué)的指導(dǎo),但作者說(shuō)科學(xué)家可能需要更嚴(yán)格的法規(guī)以確保模型安全。

他們寫(xiě)道:“現(xiàn)有法規(guī)側(cè)重于醫(yī)療數(shù)據(jù)的隱私,而新法規(guī)也應(yīng)保護(hù)分析模型?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49011

    瀏覽量

    249356
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122792
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    請(qǐng)問(wèn) CYW20829 深度睡眠模式是否可以通過(guò)遠(yuǎn)程 BLE 喚醒,還是必須從主機(jī)喚醒?

    請(qǐng)問(wèn) CYW20829 深度睡眠模式是否可以通過(guò)遠(yuǎn)程 BLE 喚醒,還是必須從主機(jī)喚醒? 謝謝!
    發(fā)表于 07-01 07:55

    NVIDIA助力解決量子計(jì)算領(lǐng)域重大挑戰(zhàn)

    NVIDIA 加速量子研究中心提供了強(qiáng)大的工具,助力解決量子計(jì)算領(lǐng)域的重大挑戰(zhàn)。
    的頭像 發(fā)表于 03-27 09:17 ?608次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)挑戰(zhàn)與機(jī)遇

    ,并廣泛介紹了深度學(xué)習(xí)兩個(gè)主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報(bào)行動(dòng)和自主平臺(tái)。最后,討論了相關(guān)的威脅、機(jī)遇、技術(shù)和實(shí)際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無(wú)所不能,需要謹(jǐn)慎應(yīng)用,同時(shí)考慮到其局
    的頭像 發(fā)表于 02-14 11:15 ?536次閱讀

    AI自動(dòng)化生產(chǎn):深度學(xué)習(xí)質(zhì)量控制中的應(yīng)用

    隨著科技的飛速發(fā)展,人工智能(AI)與深度學(xué)習(xí)技術(shù)正逐步滲透到各個(gè)行業(yè),特別是自動(dòng)化生產(chǎn)中,其潛力與價(jià)值愈發(fā)凸顯。深度學(xué)習(xí)軟件不僅使人工和
    的頭像 發(fā)表于 01-17 16:35 ?692次閱讀
    AI自動(dòng)化生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>在</b>質(zhì)量控制中的應(yīng)用

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+數(shù)據(jù)具身人工智能中的價(jià)值

    出現(xiàn)重大問(wèn)題。此外,機(jī)器人在不同環(huán)境中適應(yīng)和泛化的能力取決于它處理的數(shù)據(jù)的多樣性。例如,家庭服務(wù)機(jī)器人必須適應(yīng)各種家庭環(huán)境和任務(wù),要求它們從廣泛的家庭環(huán)境數(shù)據(jù)中學(xué)習(xí),以提高其泛化能力。
    發(fā)表于 12-24 00:33

    GPU深度學(xué)習(xí)中的應(yīng)用 GPUs圖形設(shè)計(jì)中的作用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動(dòng)技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)深度學(xué)習(xí)中扮演著至關(guān)重要的角色,
    的頭像 發(fā)表于 11-19 10:55 ?1618次閱讀

    深度學(xué)習(xí)中RNN的優(yōu)勢(shì)與挑戰(zhàn)

    循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是深度學(xué)習(xí)領(lǐng)域中處理序列數(shù)據(jù)的基石。它們通過(guò)每個(gè)時(shí)間步長(zhǎng)上循環(huán)傳遞信息,使得網(wǎng)絡(luò)能夠捕捉時(shí)間序列數(shù)據(jù)中的長(zhǎng)期依賴關(guān)系。然而,盡管RNN某些任務(wù)上表現(xiàn)出色,它們
    的頭像 發(fā)表于 11-15 09:55 ?1321次閱讀

    NPU深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門(mén)針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1903次閱讀

    pcie深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應(yīng)運(yùn)而生,它們通過(guò)
    的頭像 發(fā)表于 11-13 10:39 ?1343次閱讀

    基于深度學(xué)習(xí)的三維點(diǎn)云分類方法

    近年來(lái),點(diǎn)云表示已成為計(jì)算機(jī)視覺(jué)領(lǐng)域的研究熱點(diǎn)之一,并廣泛應(yīng)用于自動(dòng)駕駛、虛擬現(xiàn)實(shí)、機(jī)器人等許多領(lǐng)域。雖然深度學(xué)習(xí)技術(shù)處理常規(guī)結(jié)構(gòu)化的二維網(wǎng)格圖像數(shù)據(jù)方面取得了巨大成功,但在處理不規(guī)
    的頭像 發(fā)表于 10-29 09:43 ?1574次閱讀
    基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的三維點(diǎn)云分類方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識(shí)別模型的訓(xùn)練速度和準(zhǔn)確性。例如,人臉識(shí)別、自動(dòng)駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過(guò)程。 二
    的頭像 發(fā)表于 10-27 11:13 ?1353次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)
    的頭像 發(fā)表于 10-27 10:57 ?1063次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    :DE5Net_Conv_Accelerator 應(yīng)用場(chǎng)景 :面向深度學(xué)習(xí)的開(kāi)源項(xiàng)目,實(shí)現(xiàn)了AlexNet的第一層卷積運(yùn)算加速。 技術(shù)特點(diǎn) : 采用了Verilog語(yǔ)言進(jìn)行編程,與PCIe接口相集成,可以直接插入到
    的頭像 發(fā)表于 10-25 09:22 ?1223次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2879次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關(guān)于 FPGA 深度學(xué)習(xí)中應(yīng)用前景的觀點(diǎn),僅供參考: ? 優(yōu)勢(shì)方面: ? 高度定制化的計(jì)算架構(gòu):FPGA
    發(fā)表于 09-27 20:53