一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

石墨烯可使陶瓷電解質(zhì)韌性提高一倍,有助于將固態(tài)電池推向大眾市場

牽手一起夢 ? 來源:電池中國 ? 作者:佚名 ? 2020-06-23 14:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

研究表明,石墨烯(rGO)有助于防止裂紋擴展到用于電池電解質(zhì)的陶瓷材料中。

布朗大學(xué)的一個研究小組發(fā)現(xiàn)了一種方法,可以使用于制造固態(tài)鋰離子電池的陶瓷材料的韌性提高一倍。在《物質(zhì)》雜志上描述的該策略可能有助于將固態(tài)電池推向大眾市場。

布朗工程學(xué)院的博士后研究員,這項研究的主要作者克里斯托斯·阿薩納西歐說:“ 用陶瓷材料代替目前電池中的液體電解質(zhì)具有極大的興趣,因為它們更安全并且可以提供更高的能量密度?!?“到目前為止,對固體電解質(zhì)的研究都集中在優(yōu)化其化學(xué)性能上。通過這項工作,我們將重點放在機械性能上,以期使它們更安全,更實用地廣泛使用?!?/p>

電解質(zhì)是電池陰極和陽極之間的屏障,在充電或放電期間鋰離子會流過該電解質(zhì)。液體電解質(zhì)工作得很好-在當(dāng)今使用的大多數(shù)電池中都可以找到-但它們存在一些問題。在高電流下,電解質(zhì)內(nèi)部會形成細(xì)小的鋰金屬細(xì)絲,從而導(dǎo)致電池短路。而且由于液體電解質(zhì)也很容易燃燒,所以這些短路會導(dǎo)致起火。

固態(tài)陶瓷電解質(zhì)不易燃,有證據(jù)表明它們可以阻止鋰細(xì)絲的形成,從而使電池能夠在更高的電流下工作。但是,陶瓷是高脆性材料,在制造過程和使用過程中會破裂。

對于這項新研究,研究人員想了解的是,在陶瓷中加入石墨烯(一種超強的碳基納米材料)是否可以提高材料的斷裂韌性(材料在不破裂的情況下承受開裂的能力),同時又保持了所需的電子性能。電解質(zhì)功能。

Athanasiou與布朗工程學(xué)教授Brian Sheldon和Nitin Padture合作,多年來,他們一直使用納米材料來增韌用于航空航天業(yè)的陶瓷。對于這項工作,研究人員制造了小片的氧化石墨烯,將其與稱為LATP的陶瓷粉末混合,然后加熱該混合物以形成陶瓷-石墨烯復(fù)合材料。

與單獨的陶瓷相比,復(fù)合材料的機械測試表明其韌性提高了兩倍以上。Athanasiou說:“正在發(fā)生的是,當(dāng)材料中出現(xiàn)裂紋時,石墨烯薄片實際上會將斷裂的表面保持在一起,因此裂紋運行需要更多的能量?!?/p>

實驗還表明,石墨烯不會干擾材料的電性能。關(guān)鍵是確保將適量的石墨烯添加到陶瓷中。石墨烯過少將無法達到增韌效果。太多會導(dǎo)致該材料變成導(dǎo)電的,這在電解質(zhì)中是不希望的。

Padture說:“您希望電解質(zhì)傳導(dǎo)離子,而不是電?!?“石墨烯是一種良好的電導(dǎo)體,因此人們可能認(rèn)為我們正在通過在電解質(zhì)中放置導(dǎo)體來射擊自己。但是,如果我們保持足夠低的濃度,我們就可以阻止石墨烯導(dǎo)電,并且仍然可以結(jié)構(gòu)上的利益?!?/p>

兩者合計,結(jié)果表明納米復(fù)合材料可以提供一條途徑,以制造更安全的具有機械性能的固體電解質(zhì),以用于日常應(yīng)用。該小組計劃繼續(xù)努力改善材料,嘗試使用石墨烯以外的納米材料和不同類型的陶瓷電解質(zhì)。

謝爾頓說:“據(jù)我們所知,這是迄今為止任何人都制成的最堅硬的固體電解質(zhì)?!?“我認(rèn)為我們已經(jīng)表明,在電池應(yīng)用中使用這些復(fù)合材料有很多希望。”

陶瓷電解質(zhì)的其他研究進展:

日本在室溫下合成陶瓷柔性片狀電解質(zhì)

日本首都大學(xué)東京(4月變更為東京都立大學(xué))研發(fā)了一種為鋰金屬電池打造陶瓷柔性電解質(zhì)薄片的新方法。研究人員將石榴石型陶瓷、聚合物粘合劑和一種離子液體混合在一起,打造出一種類固態(tài)片狀電解質(zhì)。由于研究人員在室溫下進行合成,因而與現(xiàn)有在高溫下(》 1000°C)進行的工藝相比,該新方法的耗能大大降低。此外,該電解質(zhì)能夠在很大的溫度范圍內(nèi)工作,是一種前景非常好的電解質(zhì),可用于電動汽車等設(shè)備的電池中。

化石燃料滿足了全球大部分的能源需求,包括電力。不過,化石燃料正在被耗盡,而且燃燒化石燃料會導(dǎo)致二氧化碳和有毒氮氧化物等其他污染物直接排放到大氣中。全球都需要向更清潔的可再生能源進行轉(zhuǎn)型,不過,風(fēng)能和太陽能的可再生能源往往是間歇性能源,因為風(fēng)不會一直吹,而晚上也沒有太陽。因此,需要研發(fā)先進的能源存儲系統(tǒng),更高效地利用此種間歇性可再生能源。自1991年,索尼公司實現(xiàn)鋰離子電池的商業(yè)化以來,此類電池就對現(xiàn)代社會造成了深遠的影響,為多種便攜式電子產(chǎn)品和無繩吸塵器等家用電器提供動力。不過,電動汽車仍需要最先進的鋰離子技術(shù),而且電池的容量和安全性需要得到很大的改進。

因此,很多科學(xué)家開始研究鋰金屬電池。因為從理論上看,鋰金屬陽極的容量比現(xiàn)有的商用石墨陽極的容量更高。不過,鋰金屬陽極仍存在技術(shù)障礙。例如,在液態(tài)電池中,可能會生長鋰枝晶,導(dǎo)致電池短路,甚至引發(fā)火災(zāi)和爆炸。不過,固態(tài)無機電解質(zhì)就明顯更安全。而石榴石型(結(jié)構(gòu)形狀)陶瓷Li7La3Zr2O12,即LLZO,由于具備離子電導(dǎo)率高且能與鋰金屬兼容,被廣泛認(rèn)為是一種很有前景的固態(tài)電解質(zhì)材料。不過,生產(chǎn)高密度的LLZO電解質(zhì)需要高達1200 °C的燒結(jié)溫度,既浪費能源又耗時,因而很難大規(guī)模生產(chǎn)LLZO電解質(zhì)。此外,LLZO電解質(zhì)很脆,其與電極材料之間的物理接觸性能差,通常導(dǎo)致接觸界面電阻高,極大了限制了其在全固態(tài)鋰金屬電池中的應(yīng)用。

因此,東京都立大學(xué)的一個研究小組在Kiyoshi Kanamura教授的領(lǐng)導(dǎo)下,開始研發(fā)一種能夠在室溫下制作的柔性復(fù)合LLZO片狀電解質(zhì)。研究人員在薄薄的聚合物基材上澆上LLZO陶瓷泥漿,就像在吐司上涂上黃油一樣。然后,再放到真空爐中進行干燥,之后,該款75微米厚的片狀電解質(zhì)會被浸泡到離子液體(IL)中,以提升其離子電導(dǎo)率。離子液體就是室溫下的液體鹽,眾所周知,其導(dǎo)電率高,而且?guī)缀醪灰兹?,也不揮發(fā)。在該片狀電解質(zhì)內(nèi)部,離子液體成功填補了結(jié)構(gòu)中的微小缺口,橋接了LLZO顆粒,為鋰離子形成一個有效通道;此外,還有效降低了陰極接觸界面的電阻。在進一步研究中,研究人員發(fā)現(xiàn),結(jié)構(gòu)中的鋰離子既在離子液體,也在LLZO顆粒中擴散,因而離子液體和LLZO顆粒都突出發(fā)揮了作用。該合成法非常簡單,適合工業(yè)化生產(chǎn),而且整個過程都在室溫下進行,無需高溫?zé)Y(jié)。

盡管仍存在一些挑戰(zhàn),該研究小組表示,該柔性復(fù)合片狀電解質(zhì)所具備的機械魯棒性和可操作性使其能夠在更大的溫度范圍內(nèi)工作,也使其成為了鋰金屬電池的理想電解質(zhì)。新合成法非常簡單也意味著可能會比預(yù)想的時間更早看到此種高容量的鋰金屬電池上市。

中科院張鎖江院士開發(fā)出用于固態(tài)鋰金屬電池的柔性陶瓷/聚合物混合固態(tài)電解質(zhì)

中國科學(xué)院過程工程研究所張鎖江院士、Lan Zhang等人通過原位偶聯(lián)反應(yīng),制備了柔性陶瓷/聚合物HSE。陶瓷和聚合物通過牢固的化學(xué)鍵緊密結(jié)合,從而解決了界面相容性問題,并且離子可以快速傳輸。所制備的膜在室溫下的離子電導(dǎo)率為9.83×10 4S cm-1,并且Li+遷移數(shù)為0.68。這種原位偶聯(lián)反應(yīng)為解決界面相容性問題提供了一條有效方法。

陶瓷/聚合物混合固態(tài)電解質(zhì)(HSE)結(jié)合了兩種電解質(zhì)的優(yōu)點,是一種很有前景的材料。典型的HSEs由聚合物組成,可增強電極/電解質(zhì)的界面相容性,而無機填料則可調(diào)節(jié)離子的傳輸性。填料可以是金屬氧化物(如Al2O3、SiO2、TiO2、和Fe2O3),也可以是快速Li+導(dǎo)體(如Li1.3Al0.3Ti1.7(PO4)3(LATP)、LLZO和LGPS),這些材料不僅降低了聚合物基質(zhì)的結(jié)晶度,而且為Li+提供額外的擴散途徑,從而增強電解質(zhì)的整體性能。機械混合是獲得HSE的最常見方法,既方便又經(jīng)濟高效。然而,由這種方法制得的復(fù)合電解質(zhì)通常展現(xiàn)出較差的均勻性,并且填料不能形成相互連接的Li+導(dǎo)電通道,在該通道上不能有效提高復(fù)合材料的離子電導(dǎo)率。機械混合帶來的另一個問題是有機/無機電解質(zhì)的界面相容性,因為離子傾向于沿著低阻抗路徑流動,電導(dǎo)率的局部差異可能會導(dǎo)致界面處強空間電荷層并導(dǎo)致聚合物氧化。人們嘗試了許多方法來優(yōu)化這種界面相容性,例如減小陶瓷的粒徑,使陶瓷填料有序,尺寸較大。但是,這種問題仍然存在,并且界面相容性不能忽略。建立化學(xué)鍵是解決界面問題的新策略。Nan的研究小組利用La在脫氟化氫中的催化作用,制備了聚偏二氟乙烯(PVDF)–Li6.75La3Zr1.75Ta0.25O12(LLZTO)HSE。離子電導(dǎo)率在25 °C時高達5×10-4S cm-1。但是,該策略僅適用于由鄰碳原子中H和F組成的聚合物,例如PVDF或聚偏二氟乙烯-共六氟丙烯(PVDF-HFP),它們不能促進離子轉(zhuǎn)移。Archer小組提出了一種更通用的方法,即制備一種軟膠體玻璃HSE,將PEO鏈共價接枝到二氧化硅納米顆粒上。HSE在工作電壓高達4.3 V的高壓鎳鈷錳氧化物(NCM)LMB中工作穩(wěn)定。因此,化學(xué)鍵相互作用是解決中間相問題并促進無機填料均勻分散的有效方法,因此有助于形成具有高電導(dǎo)率和電化學(xué)穩(wěn)定性的柔性HSE。

本研究工作提出了一種新穎、可靠的方法來制造用于全固態(tài)鋰電池的陶瓷/聚合物HSE膜,該方法也可以應(yīng)用于其他陶瓷和聚合物系統(tǒng)。

責(zé)任編輯:gt

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰離子電池
    +關(guān)注

    關(guān)注

    85

    文章

    3385

    瀏覽量

    79025
  • 石墨烯
    +關(guān)注

    關(guān)注

    54

    文章

    1596

    瀏覽量

    81601
  • 電池
    +關(guān)注

    關(guān)注

    84

    文章

    11076

    瀏覽量

    134971
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    鉭元素賦能LLZO固態(tài)電解質(zhì),破解氧化物固態(tài)電池產(chǎn)業(yè)化密碼

    電子發(fā)燒友網(wǎng)綜合報道 在全球能源轉(zhuǎn)型的浪潮中,固態(tài)電池技術(shù)被視為突破傳統(tǒng)鋰離子電池能量密度與安全性瓶頸的關(guān)鍵所在。氧化物固態(tài)電解質(zhì)憑借其出色
    的頭像 發(fā)表于 05-26 09:29 ?7754次閱讀

    鉭元素賦能LLZO固態(tài)電解質(zhì),破解氧化物固態(tài)電池產(chǎn)業(yè)化密碼

    電子發(fā)燒友網(wǎng)綜合報道 在全球能源轉(zhuǎn)型的浪潮中,固態(tài)電池技術(shù)被視為突破傳統(tǒng)鋰離子電池能量密度與安全性瓶頸的關(guān)鍵所在。氧化物固態(tài)電解質(zhì)憑借其出色
    發(fā)表于 05-26 07:40 ?1607次閱讀

    超聲波焊接有利于解決固態(tài)電池的枝晶問題

    電池(SSLMBs)作為種極具潛力的儲能技術(shù),由于其固有的高安全性和實現(xiàn)高能量密度的潛力備受關(guān)注。然而,其實際應(yīng)用受制于嚴(yán)峻的界面問題,主要表現(xiàn)為固態(tài)電解質(zhì)與鋰金屬之間潤濕性差、電(
    發(fā)表于 02-15 15:08

    清華大學(xué):自由空間對硫化物固態(tài)電解質(zhì)表面及內(nèi)部裂紋處鋰沉積行為的影響

    全性的全固態(tài)鋰金屬電池的最具潛力的候選電解質(zhì)材料之。 盡管如此,仍有大量研究表明,即使在較低的電流密度下(0.5-1 mA/cm2),全固態(tài)
    的頭像 發(fā)表于 02-14 14:49 ?432次閱讀
    清華大學(xué):自由空間對硫化物<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質(zhì)</b>表面及內(nèi)部裂紋處鋰沉積行為的影響

    石墨鉛蓄電池研究進展、優(yōu)勢、挑戰(zhàn)及未來方向

    石墨鉛蓄電池石墨材料與傳統(tǒng)鉛酸電池技術(shù)相結(jié)合
    的頭像 發(fā)表于 02-13 09:36 ?1133次閱讀

    Li3MX6全固態(tài)鋰離子電池固體電解質(zhì)材料

    ? ? 研究背景 Li3MX6族鹵化物(M = Y、In、Sc等,X =鹵素)是新興的全固態(tài)鋰離子電池固體電解質(zhì)材料。與現(xiàn)有的硫化物固體電解質(zhì)相比,它們具有更高的化學(xué)穩(wěn)定性和更寬的電化
    的頭像 發(fā)表于 01-02 11:52 ?950次閱讀
    Li3MX6全<b class='flag-5'>固態(tài)</b>鋰離子<b class='flag-5'>電池</b>固體<b class='flag-5'>電解質(zhì)</b>材料

    種薄型層狀固態(tài)電解質(zhì)的設(shè)計策略

    通量、足夠的機械強度以及與電極的粘附性接觸等性質(zhì)。目前,集無機和有機成分優(yōu)點于體的復(fù)合固態(tài)電解質(zhì)(CSE)有望實現(xiàn)均勻、快速的鋰離子通量,但如何打破機械強度和粘附力之間的權(quán)衡仍然是
    的頭像 發(fā)表于 12-31 11:21 ?848次閱讀
    <b class='flag-5'>一</b>種薄型層狀<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質(zhì)</b>的設(shè)計策略

    固態(tài)電池中復(fù)合鋰陽極上固體電解質(zhì)界面的調(diào)控

    采用固體聚合物電解質(zhì)(SPE)的固態(tài)鋰金屬電池(SSLMB)具有更高的安全性和能量密度,在下代儲能領(lǐng)域具有很大的應(yīng)用前景。
    的頭像 發(fā)表于 10-29 16:53 ?1076次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>電池</b>中復(fù)合鋰陽極上固體<b class='flag-5'>電解質(zhì)</b>界面的調(diào)控

    固態(tài)電池的生產(chǎn)工藝流程

    固態(tài)電池的生產(chǎn)工藝流程主要包括以下步驟: 、前期準(zhǔn)備 制備基板 :為電池提供個穩(wěn)定的支撐結(jié)構(gòu)。 二、
    的頭像 發(fā)表于 10-28 09:34 ?4247次閱讀

    固態(tài)電池市場前景

    的技術(shù)優(yōu)勢 安全性:固態(tài)電池使用固態(tài)電解質(zhì)代替液態(tài)電解質(zhì),這大大降低了電池過熱和泄漏的風(fēng)險。在電
    的頭像 發(fā)表于 10-28 09:29 ?1676次閱讀

    固態(tài)電池的安全性分析

    解決的關(guān)鍵問題。 1. 固態(tài)電池的基本原理 固態(tài)電池與傳統(tǒng)的鋰離子電池的主要區(qū)別在于其電解質(zhì)。
    的頭像 發(fā)表于 10-28 09:23 ?2325次閱讀

    固態(tài)電池技術(shù)的最新進展

    的核心在于使用固態(tài)電解質(zhì)代替?zhèn)鹘y(tǒng)的液態(tài)電解質(zhì)。這種固態(tài)電解質(zhì)不僅能夠提供離子傳輸?shù)耐ǖ溃€能防止電池
    的頭像 發(fā)表于 10-28 09:18 ?2134次閱讀

    固態(tài)電池的優(yōu)缺點 固態(tài)電池與鋰電池比較

    固態(tài)電池種使用固態(tài)電解質(zhì)代替?zhèn)鹘y(tǒng)液態(tài)電解質(zhì)電池
    的頭像 發(fā)表于 10-28 09:12 ?6627次閱讀

    無極電容器有電解質(zhì)嗎,無極電容器電解質(zhì)怎么測

    無極電容器通常存在電解質(zhì)。電解質(zhì)在無極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質(zhì)也可能帶來些問題,如漏電和壽命問題。
    的頭像 發(fā)表于 10-01 16:45 ?849次閱讀

    固態(tài)電池的概念_固態(tài)電池的發(fā)展趨勢

    固態(tài)電池種使用固體電極和固體電解質(zhì)電池,其內(nèi)部完全沒有液體的存在,由無機物或有機高分子固體作為電池
    的頭像 發(fā)表于 09-15 11:57 ?5390次閱讀