一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

9個用Pytorch訓(xùn)練快速神經(jīng)網(wǎng)絡(luò)的方法

如意 ? 來源:讀芯術(shù) ? 作者:讀芯術(shù) ? 2020-07-07 09:56 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

事實上,你的模型可能還停留在石器時代的水平。估計你還在用32位精度或*GASP(一般活動仿真語言)*訓(xùn)練,甚至可能只在單GPU上訓(xùn)練。如果市面上有99個加速指南,但你可能只看過1個?(沒錯,就是這樣)。但這份終極指南,會一步步教你清除模型中所有的(GP模型)。

不要讓你的神經(jīng)網(wǎng)絡(luò)變成這樣。

這份指南的介紹從簡單到復(fù)雜,一直介紹到你可以完成的大多數(shù)PITA修改,以充分利用你的網(wǎng)絡(luò)。例子中會包括一些Pytorch代碼和相關(guān)標(biāo)記,可以在 Pytorch-Lightning訓(xùn)練器中用,以防大家不想自己敲碼!

這份指南針對的是誰? 任何用Pytorch研究非瑣碎的深度學(xué)習(xí)模型的人,比如工業(yè)研究人員、博士生、學(xué)者等等……這些模型可能要花費幾天,甚至幾周、幾個月的時間來訓(xùn)練。

指南(從易到難)

1. 使用DataLoader。

2. DataLoader中的進(jìn)程數(shù)。

3. 批尺寸。

4. 累積梯度。

5. 保留計算圖。

6. 轉(zhuǎn)至單GPU。

7. 16位混合精度訓(xùn)練。

8. 轉(zhuǎn)至多GPU(模型復(fù)制)。

9. 轉(zhuǎn)至多GPU節(jié)點(8+GPUs)。

10. 有關(guān)模型加速的思考和技巧

Pytorch-Lightning

文中討論的各種優(yōu)化,都可以在名為Pytorch-Lightning 的Pytorch圖書館中找到。

Lightning是基于Pytorch的一個光包裝器,它可以幫助研究人員自動訓(xùn)練模型,但關(guān)鍵的模型部件還是由研究人員完全控制。

參照此篇教程,獲得更有力的范例。

Lightning采用最新、最尖端的方法,將犯錯的可能性降到最低。

MNIST定義的Lightning模型,可適用于訓(xùn)練器。

from pytorch-lightning import Trainer

model = LightningModule(…)

trainer = Trainer()

trainer.fit(model)

1. DataLoader

這可能是最容易提速的地方??勘4鎕5py或numpy文件來加速數(shù)據(jù)加載的日子已經(jīng)一去不復(fù)返了。用 Pytorch dataloader 加載圖像數(shù)據(jù)非常簡單。

dataset = MNIST(root=self.hparams.data_root, train=train, download=True)

loader = DataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:

x, y = batch

model.training_step(x, y)

...

在Lightning中,你無需指定一個訓(xùn)練循環(huán),只需定義dataLoaders,訓(xùn)練器便會在 需要時調(diào)用它們。

2. DataLoaders中的進(jìn)程數(shù)

加快速度的第二個秘訣在于允許批量并行加載。所以,你可以一次加載許多批量,而不是一次加載一個。

# slow

loader = DataLoader(dataset, batch_size=32, shuffle=True)

# fast (use 10 workers)

loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=10)

3. 批量大小(Batch size)

在開始下一步優(yōu)化步驟之前,將批量大小調(diào)高到CPU內(nèi)存或GPU內(nèi)存允許的最大值。

接下來的部分將著重于減少內(nèi)存占用,這樣就可以繼續(xù)增加批尺寸。

記住,你很可能需要再次更新學(xué)習(xí)率。如果將批尺寸增加一倍,最好將學(xué)習(xí)速度也提高一倍。

4. 累積梯度

假如已經(jīng)最大限度地使用了計算資源,而批尺寸仍然太低(假設(shè)為8),那我們則需為梯度下降模擬更大的批尺寸,以供精準(zhǔn)估計。

假設(shè)想讓批尺寸達(dá)到128。然后,在執(zhí)行單個優(yōu)化器步驟前,將執(zhí)行16次前向和后向傳播(批量大小為8)。

# clear last step

optimizer.zero_grad()

# 16 accumulated gradient steps

scaled_loss = 0

for accumulated_step_i in range(16):

out = model.forward()

loss = some_loss(out,y)

loss.backward()

scaled_loss += loss.item()

# update weights after 8 steps. effective batch = 8*16

optimizer.step()

# loss is now scaled up by the number of accumulated batches

actual_loss = scaled_loss / 16

而在Lightning中,這些已經(jīng)自動執(zhí)行了。

trainer = Trainer(accumulate_grad_batches=16)

trainer.fit(model)

5. 保留計算圖

撐爆內(nèi)存很簡單,只要不釋放指向計算圖形的指針,比如……為記錄日志保存loss。

losses = []

...

losses.append(loss)

print(f‘current loss: {torch.mean(losses)’})

上述的問題在于,loss仍然有一個圖形副本。在這種情況中,可用.item()來釋放它。

# bad

losses.append(loss)

# good

losses.append(loss.item())

Lightning會特別注意,讓其無法保留圖形副本

6. 單GPU訓(xùn)練

一旦完成了前面的步驟,就可以進(jìn)入GPU訓(xùn)練了。GPU的訓(xùn)練將對許多GPU核心上的數(shù)學(xué)計算進(jìn)行并行處理。能加速多少取決于使用的GPU類型。個人使用的話,推薦使用2080Ti,公司使用的話可用V100。

剛開始你可能會覺得壓力很大,但其實只需做兩件事: 1)將你的模型移動到GPU上,2)在用其運行數(shù)據(jù)時,把數(shù)據(jù)導(dǎo)至GPU中。

# put model on GPU

model.cuda(0)

# put data on gpu (cuda on a variable returns a cuda copy)

x = x.cuda(0)

# runs on GPU now

model(x)

如果使用Lightning,則不需要對代碼做任何操作。只需設(shè)置標(biāo)記:

# ask lightning to use gpu 0 for training

trainer = Trainer(gpus=[0])

trainer.fit(model)

在GPU進(jìn)行訓(xùn)練時,要注意限制CPU和GPU之間的傳輸量。

# expensive

x = x.cuda(0)

# very expensive

x = x.cpu()

x = x.cuda(0)

例如,如果耗盡了內(nèi)存,不要為了省內(nèi)存,將數(shù)據(jù)移回CPU。嘗試用其他方式優(yōu)化代碼,或者在用這種方法之前先跨GPUs分配代碼。

此外還要注意進(jìn)行強制GPUs同步的操作。例如清除內(nèi)存緩存。

# really bad idea.Stops all the GPUs until they all catch up

torch.cuda.empty_cache()

但是如果使用Lightning,那么只有在定義Lightning模塊時可能會出現(xiàn)這種問題。Lightning特別注意避免此類錯誤。

7. 16位精度

16位精度可以有效地削減一半的內(nèi)存占用。大多數(shù)模型都是用32位精度數(shù)進(jìn)行訓(xùn)練的。然而最近的研究發(fā)現(xiàn),使用16位精度,模型也可以很好地工作?;旌暇戎傅氖?,用16位訓(xùn)練一些特定的模型,而權(quán)值類的用32位訓(xùn)練。

要想在Pytorch中用16位精度,先從NVIDIA中安裝 apex 圖書館 并對你的模型進(jìn)行這些更改。

# enable 16-bit on the model and the optimizer

model, optimizers = amp.initialize(model, optimizers, opt_level=‘O2’)

# when doing .backward, let amp do it so it can scale the loss

with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()

amp包會處理大部分事情。如果梯度爆炸或趨于零,它甚至?xí)U(kuò)大loss。

在Lightning中, 使用16位很簡單,不需對你的模型做任何修改,也不用完成上述操作。

trainer = Trainer(amp_level=’O2‘, use_amp=False)

trainer.fit(model)

8. 移至多GPU

現(xiàn)在,事情就變得有意思了。有3種(也許更多?)方式訓(xùn)練多GPU。

分批量訓(xùn)練

A)在每個GPU上復(fù)制模型;B)給每個GPU分配一部分批量。

第一種方法叫做分批量訓(xùn)練。這一策略將模型復(fù)制到每個GPU上,而每個GPU會分到該批量的一部分。

# copy model on each GPU and give a fourth of the batch to each

model = DataParallel(model, devices=[0, 1, 2 ,3])

# out has 4 outputs (one for each gpu)

out = model(x.cuda(0))

在Lightning中,可以直接指示訓(xùn)練器增加GPU數(shù)量,而無需完成上述任何操作。

# ask lightning to use 4 GPUs for training

trainer = Trainer(gpus=[0, 1, 2, 3])

trainer.fit(model)

分模型訓(xùn)練

將模型的不同部分分配給不同的GPU,按順序分配批量

有時模型可能太大,內(nèi)存不足以支撐。比如,帶有編碼器和解碼器的Sequence to Sequence模型在生成輸出時可能會占用20gb的內(nèi)存。在這種情況下,我們希望把編碼器和解碼器放在單獨的GPU上。

# each model is sooo big we can’t fit both in memory

encoder_rnn.cuda(0)

decoder_rnn.cuda(1)

# run input through encoder on GPU 0

out = encoder_rnn(x.cuda(0))

# run output through decoder on the next GPU

out = decoder_rnn(x.cuda(1))

# normally we want to bring all outputs back to GPU 0

out = out.cuda(0)

對于這種類型的訓(xùn)練,無需將Lightning訓(xùn)練器分到任何GPU上。與之相反,只要把自己的模塊導(dǎo)入正確的GPU的Lightning模塊中:

class MyModule(LightningModule):

def __init__():

self.encoder = RNN(。..)

self.decoder = RNN(。..)

def forward(x):

# models won‘t be moved after the first forward because

# they are already on the correct GPUs

self.encoder.cuda(0)

self.decoder.cuda(1)

out = self.encoder(x)

out = self.decoder(out.cuda(1))

# don’t pass GPUs to trainer

model = MyModule()

trainer = Trainer()

trainer.fit(model)

混合兩種訓(xùn)練方法

在上面的例子中,編碼器和解碼器仍然可以從并行化每個操作中獲益。我們現(xiàn)在可以更具創(chuàng)造力了。

# change these lines

self.encoder = RNN(。..)

self.decoder = RNN(。..)

# to these

# now each RNN is based on a different gpu set

self.encoder = DataParallel(self.encoder, devices=[0, 1, 2, 3])

self.decoder = DataParallel(self.encoder, devices=[4, 5, 6, 7])

# in forward.。.

out = self.encoder(x.cuda(0))

# notice inputs on first gpu in device

sout = self.decoder(out.cuda(4)) # 《--- the 4 here

使用多GPUs時需注意的事項

· 如果該設(shè)備上已存在model.cuda(),那么它不會完成任何操作。

· 始終輸入到設(shè)備列表中的第一個設(shè)備上。

· 跨設(shè)備傳輸數(shù)據(jù)非常昂貴,不到萬不得已不要這樣做。

· 優(yōu)化器和梯度將存儲在GPU 0上。因此,GPU 0使用的內(nèi)存很可能比其他處理器大得多。

9. 多節(jié)點GPU訓(xùn)練

每臺機器上的各GPU都可獲取一份模型的副本。每臺機器分得一部分?jǐn)?shù)據(jù),并僅針對該部分?jǐn)?shù)據(jù)進(jìn)行訓(xùn)練。各機器彼此同步梯度。

做到了這一步,就可以在幾分鐘內(nèi)訓(xùn)練Imagenet數(shù)據(jù)集了! 這沒有想象中那么難,但需要更多有關(guān)計算集群的知識。這些指令假定你正在集群上使用SLURM。

Pytorch在各個GPU上跨節(jié)點復(fù)制模型并同步梯度,從而實現(xiàn)多節(jié)點訓(xùn)練。因此,每個模型都是在各GPU上獨立初始化的,本質(zhì)上是在數(shù)據(jù)的一個分區(qū)上獨立訓(xùn)練的,只是它們都接收來自所有模型的梯度更新。

高級階段:

1. 在各GPU上初始化一個模型的副本(確保設(shè)置好種子,使每個模型初始化到相同的權(quán)值,否則操作會失效。)

2. 將數(shù)據(jù)集分成子集。每個GPU只在自己的子集上訓(xùn)練。

3. On .backward() 所有副本都會接收各模型梯度的副本。只有此時,模型之間才會相互通信。

Pytorch有一個很好的抽象概念,叫做分布式數(shù)據(jù)并行處理,它可以為你完成這一操作。要使用DDP(分布式數(shù)據(jù)并行處理),需要做4件事:

def tng_dataloader():

d = MNIST()

# 4: Add distributed sampler

# sampler sends a portion of tng data to each machine

dist_sampler = DistributedSampler(dataset)

dataloader = DataLoader(d, shuffle=False, sampler=dist_sampler)

def main_process_entrypoint(gpu_nb):

# 2: set up connections between all gpus across all machines

# all gpus connect to a single GPU “root”

# the default uses env://

world = nb_gpus * nb_nodes

dist.init_process_group(“nccl”, rank=gpu_nb, world_size=world)

# 3: wrap model in DPP

torch.cuda.set_device(gpu_nb)

model.cuda(gpu_nb)

model = DistributedDataParallel(model, device_ids=[gpu_nb])

# train your model now.。.

if __name__ == ‘__main__’:

# 1: spawn number of processes

# your cluster will call main for each machine

mp.spawn(main_process_entrypoint, nprocs=8)

Pytorch團(tuán)隊對此有一份詳細(xì)的實用教程。

然而,在Lightning中,這是一個自帶功能。只需設(shè)定節(jié)點數(shù)標(biāo)志,其余的交給Lightning處理就好。

# train on 1024 gpus across 128 nodes

trainer = Trainer(nb_gpu_nodes=128, gpus=[0, 1, 2, 3, 4, 5, 6, 7])

Lightning還附帶了一個SlurmCluster管理器,可助你簡單地提交SLURM任務(wù)的正確細(xì)節(jié)

10. 福利!更快的多GPU單節(jié)點訓(xùn)練

事實證明,分布式數(shù)據(jù)并行處理要比數(shù)據(jù)并行快得多,因為其唯一的通信是梯度同步。因此,最好用分布式數(shù)據(jù)并行處理替換數(shù)據(jù)并行,即使只是在做單機訓(xùn)練。

在Lightning中,通過將distributed_backend設(shè)置為ddp(分布式數(shù)據(jù)并行處理)并設(shè)置GPU的數(shù)量,這可以很容易實現(xiàn)。

# train on 4 gpus on the same machine MUCH faster than DataParallel

trainer = Trainer(distributed_backend=‘ddp’, gpus=[0, 1, 2, 3])

有關(guān)模型加速的思考和技巧

如何通過尋找瓶頸來思考問題?可以把模型分成幾個部分:

首先,確保數(shù)據(jù)加載中沒有瓶頸。為此,可以使用上述的現(xiàn)有數(shù)據(jù)加載方案,但是如果沒有適合你的方案,你可以把離線處理及超高速緩存作為高性能數(shù)據(jù)儲存,就像h5py一樣。

接下來看看在訓(xùn)練過程中該怎么做。確保快速轉(zhuǎn)發(fā),避免多余的計算,并將CPU和GPU之間的數(shù)據(jù)傳輸最小化。最后,避免降低GPU的速度(在本指南中有介紹)。

接下來,最大化批尺寸,通常來說,GPU的內(nèi)存大小會限制批量大小。自此看來,這其實就是跨GPU分布,但要最小化延遲,有效使用大批次(例如在數(shù)據(jù)集中,可能會在多個GPUs上獲得8000+的有效批量大?。?。

但是需要小心處理大批次。根據(jù)具體問題查閱文獻(xiàn),學(xué)習(xí)一下別人是如何處理的!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103581
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3519

    瀏覽量

    50414
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    809

    瀏覽量

    13952
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后
    的頭像 發(fā)表于 06-03 15:51 ?403次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學(xué)習(xí)率可
    的頭像 發(fā)表于 02-12 15:51 ?930次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡(luò)通過
    的頭像 發(fā)表于 02-12 15:36 ?914次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反
    的頭像 發(fā)表于 02-12 15:18 ?765次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,
    的頭像 發(fā)表于 02-12 15:15 ?851次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩階段:前向傳播和反向傳播。以下是訓(xùn)練BP
    的頭像 發(fā)表于 02-12 15:10 ?904次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1184次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>

    LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM
    的頭像 發(fā)表于 11-13 10:08 ?2103次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練方法

    掌握這 17 種方法,最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?652次閱讀
    <b class='flag-5'>Pytorch</b>深度學(xué)習(xí)<b class='flag-5'>訓(xùn)練</b>的<b class='flag-5'>方法</b>

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    。 圖2.一小型神經(jīng)網(wǎng)絡(luò) 圖3.CIFAR-10數(shù)據(jù)集訓(xùn)練的CIFAR網(wǎng)絡(luò)模型 CIFAR-10是一
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一可用的 YOLOv5 ONNX 模型,并存放在當(dāng)前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡(luò)算法中,模型的訓(xùn)練離不開大量的數(shù)據(jù)集,數(shù)據(jù)
    發(fā)表于 10-10 09:28

    分享幾個FPGA實現(xiàn)的小型神經(jīng)網(wǎng)絡(luò)

    今天我們分享幾個FPGA實現(xiàn)的小型神經(jīng)網(wǎng)絡(luò),側(cè)重應(yīng)用。
    的頭像 發(fā)表于 07-24 09:30 ?1879次閱讀
    分享幾個<b class='flag-5'>用</b>FPGA實現(xiàn)的小型<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一在機器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一多層
    的頭像 發(fā)表于 07-19 17:19 ?1557次閱讀

    Python自動訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學(xué)習(xí)和解決問題。Python由于其強大的庫支持(如TensorFlow、
    的頭像 發(fā)表于 07-19 11:54 ?698次閱讀