一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Lightmatter推出Mars芯片 用光執(zhí)行神經(jīng)網(wǎng)絡(luò)計算

IEEE電氣電子工程師 ? 來源:IEEE電氣電子工程師學(xué)會 ? 作者:IEEE電氣電子工程師 ? 2020-09-12 11:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

多年來,電氣工程師和計算機科學(xué)家一直在努力尋找如何更快,更有效地執(zhí)行神經(jīng)網(wǎng)絡(luò)計算的方法。實際上,設(shè)計適合神經(jīng)網(wǎng)絡(luò)計算的加速器最近已經(jīng)成為活躍的溫床,最常見的解決方案是GPU,它與各種特定于應(yīng)用的IC(例如Google的 Tensor Processing Unit )和現(xiàn)場可編程門陣列展開競爭。

現(xiàn)在,另一位競爭者剛剛進(jìn)入了這個競技場,它基于一種完全不同的范例:光計算。麻省理工學(xué)院的一個名為 Lightmatter的分支機構(gòu)在近日的Hot Chips線上會議上描述了其“ Mars ”設(shè)備。Lightmatter不是唯一采用這種新穎策略的公司,但它似乎領(lǐng)先于競爭對手。

不過,我(作者)把這種方法稱為“新穎”可能會有點誤導(dǎo)大家。事實上,光學(xué)計算有著悠久的歷史。早在20世紀(jì)50年代末,它就被用于處理第一批合成孔徑雷達(dá)(synthetic-aperture radar,SAR)圖像,這些圖像是在數(shù)字計算機無法完成必要的數(shù)學(xué)計算任務(wù)的時候建造的。這解釋了為什么工程師要制造各種各樣的模擬計算機,這些模擬計算機基于spinning disks,sloshing fluids,continuous amounts of electric charge甚至光線。

在過去的幾十年中,研究人員不時地重新提出了用光來計算事物的想法,但這一概念并沒有被證明對任何事物都有廣泛的實用性。當(dāng)涉及到神經(jīng)網(wǎng)絡(luò)計算時,Lightmatter正在嘗試改變這一現(xiàn)狀。Mars裝置的核心是一個芯片,該芯片中包括一個模擬光學(xué)處理器,專門設(shè)計用于執(zhí)行神經(jīng)網(wǎng)絡(luò)基本的數(shù)學(xué)運算。

這里的關(guān)鍵操作是矩陣乘法,該乘法包括將數(shù)字對相乘并相加結(jié)果??梢詷?gòu)成光的加法并不奇怪,因為當(dāng)兩束光束結(jié)合時,構(gòu)成光的電磁波會疊加在一起。

更棘手的問題是如何用光來做乘法運算。讓我在這里概述一下,當(dāng)然,如果想了解更全面的描述,我建議閱讀Lightmatter在其博客上提供的關(guān)于其技術(shù)的相關(guān)文章。

Lightmatter光學(xué)處理器的基本單位是所謂的 Mach-Zehnder干涉儀的裝置 。Ludwig Mach和Ludwig Zehnder在19世紀(jì)90年代發(fā)明了這種設(shè)備,所以我們這里所說的并不是完全現(xiàn)代的東西。新的想法是將許多Mach-Zehnder干涉儀縮小到納米級尺寸,并將它們集成到一個芯片上,以加快神經(jīng)網(wǎng)絡(luò)計算的速度。

這種干涉儀將入射光分成兩束,然后經(jīng)過兩條不同的路徑,將產(chǎn)生的兩個光束重新組合。如果兩條路徑相同,那么輸出看起來就像輸入。但是,如果兩個光束中的一個必須比另一個光束傳播得更遠(yuǎn)或速度減慢,則它會與另一個光束異相。在極端情況下,它可能是完全180度(半波長)的相位不一致,在這種情況下,當(dāng)重新組合時,兩束光束會產(chǎn)生破壞性的干涉,并且輸出完全為零。

一般來說,光在輸出端的場振幅將是輸入端的光振幅乘以在其兩臂行進(jìn)的光之間相位差的一半的余弦。如果你能用一些方便的方法控制相位差,你就有了一個可以進(jìn)行乘法運算的裝置。

Lightmatter的Mach-Zehnder干涉儀是通過在納米光子芯片中為光形成適當(dāng)?shù)男〔▽?dǎo)而構(gòu)建的。通過使用折射率取決于其所受電場的材料,可以簡單地通過施加電壓來產(chǎn)生電場來控制分裂光束的相對相位,就像給電容器充電一樣。在光物質(zhì)的芯片中,這是通過在干涉儀的一個臂上施加一個極性的電場,在另一個臂上施加相反極性的電場來實現(xiàn)的。

就像電容器一樣,電流僅在電荷積累時流動。一旦有足夠的電荷來提供所需強度的電場,就不再有電流流動,因此就不再需要能量。這很重要,因為這意味著一旦你設(shè)置了要應(yīng)用的乘數(shù)的值,并且隨后該值(神經(jīng)網(wǎng)絡(luò)計算中的“權(quán)重”)沒有變化,則不再需要能量。通過芯片的光流同樣不消耗能量。所以這里有一個非常有效的乘法系統(tǒng),一個以光速運行的系統(tǒng)。

各種模擬計算機的缺點之一是它們可以執(zhí)行的計算精度有限。這也是Lightmatter芯片的一個缺點——你不能像使用數(shù)字電路那樣精確地指定數(shù)字。幸運的是,神經(jīng)網(wǎng)絡(luò)一旦經(jīng)過訓(xùn)練就可以進(jìn)行“推理”計算,不需要太多的分辨率。然而,神經(jīng)網(wǎng)絡(luò)是可以訓(xùn)練的。“訓(xùn)練需要更高的動態(tài)范圍;因此,我們專注于推理?!盠ightmatter首席執(zhí)行官兼公司創(chuàng)始人之一 Nicholas Harris表示?!拔覀冇幸粋€8位等效系統(tǒng)?!?/p>

你或許會想,Lightmatter革命性的用于用光執(zhí)行神經(jīng)網(wǎng)絡(luò)計算的新設(shè)備在現(xiàn)階段只是一個實驗室原型,但這是錯誤的想法。該公司在生產(chǎn)一種實用的產(chǎn)品方面已經(jīng)走了相當(dāng)長的路,它可以被添加到任何一個帶有PCI-Express插槽的服務(wù)器主板上,并立即編程開始進(jìn)行神經(jīng)網(wǎng)絡(luò)推理計算。Harris說:“我們非常專注于使它看起來不像外星人的技術(shù)?!?他解釋說,“Lightmatter不僅內(nèi)置了這種硬件,還創(chuàng)建了必要的軟件工具鏈,以支持將其與標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)框架(TensorFlow和PyTorch)一起使用。

Lightmatter預(yù)計將于2021年底投入生產(chǎn),該公司的Mars設(shè)備也將投入商業(yè)生產(chǎn)。Harris說,該公司的芯片雖然很精密復(fù)雜,但產(chǎn)量很高,這在很大程度上是因為所涉及的納米光子組件與切割中所發(fā)現(xiàn)的相比并沒有那么小邊緣的電子設(shè)備。因此,保持高收益率和低價格的Mars設(shè)備應(yīng)該不難與GPU競爭。

誰知道呢,也許其他公司,例如 Lightintelligence , LightOn , Optalysis 或 Fathom Computing ,屆時將推出他們自己的基于光的神經(jīng)網(wǎng)絡(luò)加速器卡。不過,Harris并不為此擔(dān)心 -- 我們遙遙領(lǐng)先。

原文標(biāo)題:Lightmatter研發(fā)Mars芯片 能以光速執(zhí)行神經(jīng)網(wǎng)絡(luò)計算

文章出處:【微信公眾號:IEEE電氣電子工程師學(xué)會】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    459

    文章

    52465

    瀏覽量

    440332
  • SAR
    SAR
    +關(guān)注

    關(guān)注

    3

    文章

    426

    瀏覽量

    46912
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103510

原文標(biāo)題:Lightmatter研發(fā)Mars芯片 能以光速執(zhí)行神經(jīng)網(wǎng)絡(luò)計算

文章出處:【微信號:IEEE_China,微信公眾號:IEEE電氣電子工程師】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不進(jìn)行任何
    的頭像 發(fā)表于 02-12 16:41 ?734次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?650次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?906次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計算每層網(wǎng)絡(luò)的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?760次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?846次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1177次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點是每一層的每個神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡單直觀,但在
    的頭像 發(fā)表于 11-15 14:53 ?1850次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks,F(xiàn)NN
    的頭像 發(fā)表于 11-15 14:47 ?1767次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1122次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1623次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1561次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實時機器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?660次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    、低功耗等特點,逐漸成為深度神經(jīng)網(wǎng)絡(luò)在邊緣計算和設(shè)備端推理的重要硬件平臺。本文將詳細(xì)探討FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,包括其優(yōu)勢、設(shè)計流程、關(guān)鍵技術(shù)以及實際應(yīng)用案例。
    的頭像 發(fā)表于 07-24 10:42 ?1192次閱讀

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)的方法和技術(shù)

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)是人工智能領(lǐng)域的一個重要研究方向,旨在通過設(shè)計專門的硬件來加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和推理過程,提高計算效率和能效比。以下將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)的方法和技術(shù),并附上
    的頭像 發(fā)表于 07-15 10:47 ?2310次閱讀