),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
發(fā)表于 02-12 15:15
?863次閱讀
,一個(gè)新的競(jìng)爭(zhēng)力量——LPU(Language Processing Unit,語(yǔ)言處理單元)已悄然登場(chǎng),LPU專注于解決自然語(yǔ)言處理(NLP)任務(wù)中的順序性問(wèn)題,是構(gòu)建AI應(yīng)用不可或
發(fā)表于 12-09 11:01
?3368次閱讀
隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動(dòng)技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)在深度
發(fā)表于 11-19 10:55
?1629次閱讀
深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像
發(fā)表于 11-15 14:52
?847次閱讀
循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是深度學(xué)習(xí)領(lǐng)域中處理序列數(shù)據(jù)的基石。它們通過(guò)在每個(gè)時(shí)間步長(zhǎng)上循環(huán)傳遞信息,使得網(wǎng)絡(luò)能夠捕捉時(shí)間序列數(shù)據(jù)中的長(zhǎng)期依賴關(guān)系。然而,盡管RNN在某些任務(wù)上表現(xiàn)出色,它們
發(fā)表于 11-15 09:55
?1332次閱讀
和GPU相比,NPU在處理深度學(xué)習(xí)任務(wù)時(shí)展現(xiàn)出了顯著的優(yōu)勢(shì)。 1. 設(shè)計(jì)目的 傳統(tǒng)處理器: CPU(中央
發(fā)表于 11-15 09:29
?1241次閱讀
隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為
發(fā)表于 11-14 15:17
?1922次閱讀
深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理
發(fā)表于 11-13 10:39
?1359次閱讀
自然語(yǔ)言處理(NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它旨在使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長(zhǎng)短期記憶(LSTM)網(wǎng)絡(luò)的出現(xiàn)
發(fā)表于 11-13 09:56
?1166次閱讀
掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
發(fā)表于 10-28 14:05
?661次閱讀
能力,可以顯著提高圖像識(shí)別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識(shí)別、自動(dòng)駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過(guò)程。 二、自然語(yǔ)言處理 自然語(yǔ)言處理(NLP)是
發(fā)表于 10-27 11:13
?1384次閱讀
FPGA(現(xiàn)場(chǎng)可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
發(fā)表于 10-25 09:22
?1238次閱讀
圖形處理器(GPU)憑借其強(qiáng)大的并行計(jì)算能力,成為加速深度學(xué)習(xí)任務(wù)的理想選擇。
發(fā)表于 10-17 10:07
?617次閱讀
微處理器的執(zhí)行單元(Execution Unit,簡(jiǎn)稱EU)是微處理器中負(fù)責(zé)執(zhí)行指令的核心部分,它集成了多種功能單元,共同協(xié)作完成算術(shù)運(yùn)算、邏輯運(yùn)算以及指令的譯碼和執(zhí)行等
發(fā)表于 10-05 15:19
?1478次閱讀
。FPGA的優(yōu)勢(shì)就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學(xué)習(xí)未來(lái)會(huì)怎樣發(fā)展,能走多遠(yuǎn),你怎么看。
A:FPGA 在深度學(xué)習(xí)領(lǐng)域具有
發(fā)表于 09-27 20:53
評(píng)論