一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能在雷達應(yīng)用中限制和發(fā)展前景和在實時對抗中的應(yīng)用

454398 ? 來源:ST社區(qū) ? 作者:ST社區(qū) ? 2023-02-03 14:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:ST社區(qū)

人工智能是研究、開發(fā)用于模擬、延伸和擴展人的智能理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門科學(xué)。雷達目標識別技術(shù)是人工智能在裝備領(lǐng)域的重要應(yīng)用,隨著人工智能技術(shù)的發(fā)展,雷達識別也在不斷進步,從模式識別、機器學(xué)習(xí)到近年來的發(fā)展迅猛的深度學(xué)習(xí)、遷移學(xué)習(xí)等在雷達識別中都有較多研究成果。

傳統(tǒng)雷達識別方法難以適應(yīng)復(fù)雜多變的戰(zhàn)場環(huán)境

現(xiàn)有雷達目標識別常采用統(tǒng)計模式識別理論。模式識別主要利用統(tǒng)計學(xué)、概率論、計算幾何、機器學(xué)習(xí)、信號處理以及算法的設(shè)計等工具從可感知的數(shù)據(jù)中進行推理的一門學(xué)科,其中心任務(wù)就是找出某類事物的本質(zhì)屬性,對于雷達目標識別而言即首先根據(jù)雷達所跟蹤目標的運動、回波等信息,提取目標穩(wěn)定的且具有標志性的特征,稱為識別特征模板,然后把待識別的模式劃分到各自模式類中。對于給定一個模式的識別/分類將面臨兩類任務(wù):監(jiān)督分類和無監(jiān)督分類,其中有監(jiān)督分類把模式劃分已有的類別中,而無監(jiān)督分類把模式劃分到未知的類別中。

人工智能在雷達應(yīng)用中的限制和發(fā)展前景

現(xiàn)有雷達常用識別方法在下文中稱為傳統(tǒng)雷達識別技術(shù)。特征提取是傳統(tǒng)雷達識別技術(shù)重要環(huán)節(jié),雷達識別特征強烈依賴于用人的先驗知識和專業(yè)技能,雷達目標識別算法的設(shè)計需要較深的目標特性、特征提取的研究背景。

傳統(tǒng)雷達目標識別也是依據(jù)所采用的特征不同而分為窄帶RCS特征識別、高分辨距離像特征識別、ISAR特征識別和運動特征識別、微動特征識別等技術(shù)途徑。

傳統(tǒng)雷達目標識別通常是接收雷達傳感器固定信息進行數(shù)字信號處理提取出待識別目標的特征,利用已有的特征模板對提取的特征進行分類,對照隸屬度對目標進行識別。傳統(tǒng)目標識別存在的主要問題是按照預(yù)先設(shè)定的識別模式工作,不具備隨目標和環(huán)境變化而自動改變識別模式的能力,當環(huán)境發(fā)生變化時,僅僅依靠被動的特征提取、分類已難以獲得理想的效果,對目標和環(huán)境的適應(yīng)能力不足。面對日益復(fù)雜的戰(zhàn)場環(huán)境及密集雜波、多目標背景等挑戰(zhàn),為滿足當前特別是未來作戰(zhàn)需求,識別技術(shù)必須進一步創(chuàng)新發(fā)展以不斷提升識別模式、識別性能,才能適應(yīng)日益復(fù)雜的作戰(zhàn)環(huán)境。

深度學(xué)習(xí)識別對大樣本需求限制了在實時對抗中的應(yīng)用

傳統(tǒng)雷達目標識別難點主要集中在對待識別目標的差異性規(guī)律、識別機理等基礎(chǔ)問題掌握不全面,解決識別問題的前提是目標特性的深入分析,是一個長期的研究過程。但武器系統(tǒng)智能化發(fā)展速度迅猛,武器裝備的智能作戰(zhàn)能力提升對雷達識別技術(shù)提出了更高的要求,不可能等目標特性機理完全清楚了,再去研究雷達識別技術(shù)。

傳統(tǒng)雷達識別

隨著人工智能技術(shù)的迅速發(fā)展,基于深度學(xué)習(xí)、遷移學(xué)習(xí)等人工智能在軍事領(lǐng)域應(yīng)用技術(shù)也受到國內(nèi)外廣泛關(guān)注,許多專家、學(xué)者均提出了采用智能識別技術(shù)進行目標和環(huán)境特征提取和模式識別等任務(wù),實現(xiàn)對雷達對非合作目標的有效識別。美國國防部國防創(chuàng)新試驗小組也明確指出AI關(guān)注重點:能夠為實時對抗服務(wù)的人工智能和機器學(xué)習(xí)。

目前,基于深度學(xué)習(xí)方法對不同形式雷達數(shù)據(jù)進行處理,經(jīng)過調(diào)研發(fā)現(xiàn),針對不同雷達成像原理集信號處理方法,可以得到不同形式的雷達數(shù)據(jù)。如合成孔徑雷達圖像、高分辨距離像、微多普勒圖譜以及距離多普勒圖譜等。主流的研究思路主要基于生成各種不同雷達圖像,利用深度學(xué)習(xí)網(wǎng)絡(luò)對圖像進行處理。

利用深度學(xué)習(xí)網(wǎng)絡(luò)對雷達數(shù)據(jù)處理的思路主要是在宏觀角度的闡述,深度學(xué)習(xí)與常規(guī)雷達識別技術(shù)最主要差異在于采用特征的不同,技術(shù)途徑也因特征提取的方法不同而具有一定的差異。

常規(guī)雷達識別區(qū)別于深度學(xué)習(xí),最主要的差異在于采用的特征不同。常規(guī)雷達識別借助專業(yè)技術(shù)人員的經(jīng)驗進行特征提取,采用窄帶統(tǒng)計特征、寬帶散射中心、微動等反映了目標散射機理的特征,具有一定的物理含義,稱為物理特征。物理特征主要通過專業(yè)人員對數(shù)據(jù)的深入分析后進行特征提取,從而建立識別特征庫,但在有限樣本情況下對復(fù)雜函數(shù)的表示能力有限,針對復(fù)雜問題泛化能力受到一定的限制。

基于CNN的深度算法

而深度學(xué)習(xí)的實質(zhì),是通過構(gòu)建具有很多隱層的機器學(xué)習(xí)模型和海量的訓(xùn)練數(shù)據(jù),來學(xué)習(xí)更有用的特征,從而最終提升分類或預(yù)測的準確性。通過計算機自動的逐層特征變換,可以學(xué)習(xí)到輸入數(shù)據(jù)的內(nèi)在特征,使得分類識別更加容易,同時模型結(jié)構(gòu)的深度化也使得對復(fù)雜函數(shù)的特征表示能力更。深度學(xué)習(xí)識別最主要的特點是自動提取特征,減少了技術(shù)人員對專業(yè)知識的依賴程度。

深度學(xué)習(xí)識別最大的缺點是需要大量的訓(xùn)練數(shù)據(jù),充分利用訓(xùn)練數(shù)據(jù)的信息,才能形成分類約束條件,而目前限制人工智能在軍事領(lǐng)域應(yīng)用的關(guān)鍵問題就在于:短時間、強對抗的交戰(zhàn)環(huán)境能夠提供的機器學(xué)習(xí)樣本數(shù)量太少,導(dǎo)致人工智能難以在對抗環(huán)境中施展;并且深度學(xué)習(xí)獲得的隱層特征物理含義不明確,武器系統(tǒng)出現(xiàn)問題后難以定位。因此直接在武器裝備中采用深度學(xué)習(xí)等人工智能識別技術(shù)與裝備特點不相適應(yīng),需要進一步挖掘新的人工智能途徑,研究人工智能在武器裝備應(yīng)用的模式。

基于反饋機制認知識別應(yīng)用的初步框架

認知學(xué)識別在實時對抗復(fù)雜環(huán)境下或大有可為

“認知學(xué)識別”的定義和本質(zhì)仍是科學(xué)界正在努力探索研究尚未完全解決的問題,當前國內(nèi)外還沒有關(guān)于“認知學(xué)識別”的明確定義。從工程技術(shù)角度看,可以狹義地將認知識別理解為深度強化學(xué)習(xí),是帶真正推理、反饋能力的強人工智能。通過對歷史和當前環(huán)境的檢測和分析,對目標學(xué)習(xí)和推理,利用相應(yīng)結(jié)果自適應(yīng)調(diào)整識別系統(tǒng)的各項參數(shù),在對目標有效、可靠且穩(wěn)健的感知的基礎(chǔ)上,快速完成認知、反饋、調(diào)整策略、進行決策,并在時間、空間、頻率和極化等多個維度實現(xiàn)復(fù)雜干擾條件下的智能化博弈,從而大幅度提高系統(tǒng)的識別性能。針對目前人工智能在裝備應(yīng)用中存在的問題,主要分為兩個方面:一、深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理解釋問題;二、帶有反饋機制的強人工智能網(wǎng)絡(luò)的建立。

深度學(xué)習(xí)識別最大的缺點是需要大量的訓(xùn)練數(shù)據(jù)

為了解決深度學(xué)習(xí)獲得的隱層特征物理含義不明確問題,需要對深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理含義進行解析,并通過對目標微動特性的研究,建立微動參數(shù)與深度學(xué)習(xí)網(wǎng)絡(luò)之間的關(guān)聯(lián)關(guān)系。通過對進動目標的雷達回波測試數(shù)據(jù)的寬窄帶數(shù)據(jù)進行空間變換,得到不同變換空間下的微動特征并建立目標進動特征庫。基于進動特征庫數(shù)據(jù)對深度學(xué)習(xí)網(wǎng)絡(luò)進行訓(xùn)練,根據(jù)得到的訓(xùn)練結(jié)果與目標進動參數(shù)建立關(guān)聯(lián)關(guān)系,最終通過這種關(guān)聯(lián)關(guān)系對網(wǎng)絡(luò)隱層參數(shù)進行物理解釋。

以上闡述了目前智能識別技術(shù)能夠達到的效果,對于帶真正推理、反饋能力的強人工智能的實現(xiàn)還需要對識別流程框架進一步優(yōu)化。為構(gòu)建基于反饋機制認知技術(shù)在雷達識別應(yīng)用中的初步框架,應(yīng)充分利用目標飛行階段、關(guān)鍵事件等時間軸上的先驗信息和知識,在雷達實際跟蹤目標的過程中,對飛行階段、關(guān)鍵事件進行判斷,將判斷結(jié)果實時反饋到知識庫中,結(jié)合時間軸上的先驗信息和知識,通過反饋機制對知識庫進行實時更新,從而更精準地識別出目標。

深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理含義解析

針對目前在雷達識別應(yīng)用領(lǐng)域中的難點技術(shù),尤其是非合作外軍目標由于先驗知識的匱乏、訓(xùn)練樣本少等問題,建議采用強人工智能的認知學(xué)識別方法,深入挖掘其對電磁環(huán)境的認知、推理能力,通過多傳感器資源、信息的共享、協(xié)作、推理以及算法反饋機制,形成人工智能在武器裝備應(yīng)用的一種新模式,以達到非合作目標智能識別的目的。

審核編輯黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 雷達
    +關(guān)注

    關(guān)注

    50

    文章

    3119

    瀏覽量

    120076
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49012

    瀏覽量

    249392
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122793
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    CES Asia 2025聚焦低空智能感知與空域管理,論壇開啟行業(yè)新征程

    、UTM/UAM管理系統(tǒng)發(fā)展與互操作性、人工智能在空域動態(tài)管理的應(yīng)用等關(guān)鍵議題,旨在匯聚全球智慧,為低空經(jīng)濟發(fā)展注入新動力。 低空通信導(dǎo)航監(jiān)視技術(shù)是低空飛行的基石。隨著5G、衛(wèi)星通信
    發(fā)表于 07-10 09:57

    人工智能在未來戰(zhàn)爭占主導(dǎo)地位?

    ? ? ? 人工智能在未來戰(zhàn)爭占主導(dǎo)地位,這一議題在當前軍事理論和戰(zhàn)略研究愈發(fā)凸顯其重要性。隨著科技的飛速發(fā)展人工智能不僅改變了我們的
    的頭像 發(fā)表于 01-22 08:05 ?577次閱讀

    AI 在串口屏應(yīng)用領(lǐng)域的發(fā)展前景

    人工智能(AI)在串口屏應(yīng)用領(lǐng)域的發(fā)展前景非常廣闊,尤其是在物聯(lián)網(wǎng)(IoT)、工業(yè)自動化、智能家居和車載系統(tǒng)等領(lǐng)域。帝晶光電串口屏。以下是一些具體的發(fā)展前景: 1. 人機交互(HMI)
    的頭像 發(fā)表于 11-21 09:20 ?1512次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的一場革命。在人工智能硬件加速,嵌入式系統(tǒng)以其獨特的優(yōu)勢和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)等算法,嵌入式系統(tǒng)能夠高效地處理大量數(shù)
    發(fā)表于 11-14 16:39

    RISC-V在AI領(lǐng)域的發(fā)展前景怎么樣?

    隨著人工智能的不斷發(fā)展,現(xiàn)在的視覺機器人,無人駕駛等智能產(chǎn)品的不斷更新迭代,發(fā)現(xiàn)ARM占用很大的市場份額,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI領(lǐng)域有哪些參考方案?
    發(fā)表于 10-25 19:13

    人工智能在智慧城市建設(shè)的應(yīng)用

    人工智能(AI)在智慧城市建設(shè)的應(yīng)用廣泛而深入,以下是對其主要應(yīng)用的介紹: 一、交通管理與優(yōu)化 交通流量監(jiān)測與優(yōu)化 人工智能通過實時監(jiān)測交通流量,優(yōu)化信號燈配時,有效減少交通擁堵現(xiàn)象
    的頭像 發(fā)表于 10-24 16:15 ?2350次閱讀

    醫(yī)療機器人的發(fā)展前景

     醫(yī)療機器人的發(fā)展前景十分廣闊,主要基于技術(shù)進步、市場需求增長以及政策支持的共同作用。以下是對醫(yī)療機器人發(fā)展前景的詳細分析:   一、技術(shù)進步推動行業(yè)發(fā)展   技術(shù)創(chuàng)新:隨著人工智
    的頭像 發(fā)表于 10-21 15:21 ?3083次閱讀

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    、優(yōu)化等方面的應(yīng)用有了更清晰的認識。特別是書中提到的基于大數(shù)據(jù)和機器學(xué)習(xí)的能源管理系統(tǒng),通過實時監(jiān)測和分析能源數(shù)據(jù),實現(xiàn)了能源的高效利用和智能化管理。 其次,第6章通過多個案例展示了人工智能在能源科學(xué)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    農(nóng)業(yè)、環(huán)保等,為人類社會的可持續(xù)發(fā)展做出貢獻。 總結(jié) 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們展示了一個充滿希望和機遇的未來。在這個未來,
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    深刻認識到人工智能在推動科學(xué)進步的核心價值。它不僅是科技進步的加速器,更是人類智慧拓展的催化劑,引領(lǐng)我們邁向一個更加智慧、高效、可持續(xù)的科學(xué)研究新時代。
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V和Arm內(nèi)核及其定制的機器學(xué)習(xí)和浮點運算單元,用于處理復(fù)雜的人工智能圖像處理任務(wù)。 四、未來發(fā)展趨勢 隨著人工智能技術(shù)的不斷發(fā)展和普及,RISC-V在
    發(fā)表于 09-28 11:00

    生成式人工智能在教育的應(yīng)用

    生成式人工智能在教育的應(yīng)用日益廣泛,為教育領(lǐng)域帶來了諸多變革和創(chuàng)新。以下是對生成式人工智能在教育的幾個主要應(yīng)用方面的詳細闡述:
    的頭像 發(fā)表于 09-16 16:07 ?2837次閱讀

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    材料基因組工程的推動下,人工智能如何與材料科學(xué)結(jié)合,加快傳統(tǒng)材料和新型材料的開發(fā)過程。 第4章介紹了人工智能在加快藥物研發(fā)、輔助基因研究方面及在合成生物學(xué)的普遍應(yīng)用。 第5章介紹了人工智能
    發(fā)表于 09-09 13:54

    FPGA在人工智能的應(yīng)用有哪些?

    定制化的硬件設(shè)計,提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和云計算的加速,還可以針對特定應(yīng)用場景進行定制化計算,為人工智能技術(shù)的
    發(fā)表于 07-29 17:05

    國產(chǎn)FPGA的發(fā)展前景是什么?

    國產(chǎn)FPGA的發(fā)展前景是積極且充滿機遇的,主要體現(xiàn)在以下幾個方面: 一、市場需求增長 技術(shù)驅(qū)動:隨著5G、物聯(lián)網(wǎng)、人工智能、大數(shù)據(jù)等技術(shù)的快速發(fā)展,對FPGA的性能和靈活性提出了更高要求,為國產(chǎn)
    發(fā)表于 07-29 17:04