一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

利用神經(jīng)網(wǎng)絡尋找超新星

Tensorflowers ? 來源:TensorFlow ? 作者:TensorFlow ? 2020-10-22 16:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

簡介

天文學是研究天體的學科,其研究對象包含恒星、星系、黑洞等。研究天體有點像在自然物理實驗室做實驗。在這個實驗室里,會發(fā)生自然界中最為極端的變化過程,而這些過程中的絕大部分都無法在地球上重現(xiàn)。通過比較我們對物理學的了解和在宇宙中發(fā)現(xiàn)的事實,觀察宇宙中的極端事件可以檢驗并深化我們對物理的認知。

在天文學家眼中,發(fā)生在大質(zhì)量恒星生命末期的特殊類型事件就非常有趣。恒星由氫通過引力作用聚集而成,當氫的密度足夠高時,氫原子開始聚變,繼而發(fā)出光,并產(chǎn)生氦、碳、氧、氖等元素。聚變過程會產(chǎn)生向外的壓力,而引力則會產(chǎn)生向內(nèi)的壓力,二者相互作用,使恒星在燃燒燃料時保持穩(wěn)定。當恒星試圖融合鐵原子時,這種穩(wěn)定的狀態(tài)就會發(fā)生變化。由于融合過程不會產(chǎn)生能量,而是必須從恒星中提取能量,從而導致恒星的核心坍塌并發(fā)生超新星爆炸。

蟹狀星云,超新星遺跡(圖片來自 hubblesite.org)

這個過程對天文學家而言極具意義。借助爆炸過程中出現(xiàn)的極端條件,天文學家可以觀察重元素的合成、測試物質(zhì)在高壓和高溫下的行為,也可以觀察爆炸的產(chǎn)物,即中子星或黑洞。

超新星也可以用作標準燭光。如何測量天體的距離是天文學中的一個典型問題。因為恒星距離地球太遠,所以我們很難判斷所看到的恒星是離我們很近但是很暗的恒星,還是離我們很遠但是很亮的恒星。宇宙中大多數(shù)的超新星爆炸過程都非常相似;因此,天文學家選擇使用超新星來測量距離,而距離對宇宙學家研究宇宙膨脹和暗能量等都非常重要。

盡管超新星爆炸時非常亮(與其宿主星系的亮度相比),但由于它們距離地球太遠、爆炸的發(fā)生率太低(每個星系每個世紀大約只有一顆超新星)并且爆炸的持續(xù)時間太短(可能持續(xù)數(shù)天到數(shù)周),因此這類事件很難被發(fā)現(xiàn)。

此外,要從超新星中獲得有用的信息就必須進行跟進,也就是使用一種稱為光譜儀的儀器來觀察目標超新星,并測量爆炸時在不同頻率下釋放的能量。由于許多有趣的物理過程發(fā)生在爆炸開始后的數(shù)小時內(nèi),因此,最好盡早開始跟進。

那么,我們?nèi)绾尾拍茉谟钪嬷杏^測到的所有天體中快速找到這些超新星爆炸事件呢?

當今的天文學

幾十年前,天文學家必須選擇并對準天空中的某個特定天體才能研究該天體。而目前的現(xiàn)代望遠鏡(例如正在投入使用的茲威基瞬變設施 (ZTF) 或薇拉·魯賓天文臺)能以非常高的速度拍攝天空的大幅圖像,每三天觀察一次可視范圍內(nèi)的天空,還能制作一段南半球天空的影片。如今,ZTF 望遠鏡每晚會生成1.4TB的數(shù)據(jù),實時識別天空中有趣的變化物體并傳送相關信息。

當某個物體的亮度發(fā)生變化時,這些望遠鏡能夠探測到這種變化并發(fā)出警報。這些警報通過數(shù)據(jù)流發(fā)送,每個警報由三張 63x63 像素的裁剪圖像組成。這三張圖像分別被稱為科學圖像、參照圖像和差值圖像。

科學圖像是對特定觀察位置的最新觀察結(jié)果。通常會在探測開始時拍攝模板,然后將該模板與科學圖像進行比較。科學圖像與模板之間的任何不同之處都會出現(xiàn)在差值圖像中。在對圖像進行一些處理后,用科學圖像減去參照圖像,計算得到的便是差值。

目前,ZTF 望遠鏡平均每晚發(fā)送 10 萬次警報,最多可發(fā)送 100 萬次。如果有人想手動檢查每一個警報,我們不妨假設檢查每一個警報需要 3 秒鐘,那么對于一個普通的夜晚(發(fā)送 10 萬次警報),檢查一晚上所有的警報則需要大約 3.5 天時間。

從左至右分別是科學圖像、參照圖像和差值圖像:這三張圖像加上其他的重要數(shù)據(jù),如觀測條件和有關物體的信息。第四張圖像來自 PanSTARRS,經(jīng) Aladin Sky Atlas 上色。您可以在 ALeRCE 前端看到超新星的亮度在不同時間的完整變化過程

整理這些接收到警報是一項繁重的任務。當收到新的警報時,產(chǎn)生該警報的天體類型可能是未知的。因此,我們首先需確認是否已在其他觀測中了解到這個天體(交叉匹配)。我們還需要確認是哪一種天體產(chǎn)生的警報(分類)。最后,我們需要整理數(shù)據(jù)并將其提供給社區(qū)。這項任務需要 ALeRCE、Lasair、Antares 等天文分類系統(tǒng)來完成。

由于這些警報基本上包含天空中發(fā)生的一切變化,因此我們應該能夠在 ZTF 望遠鏡發(fā)出的所有警報中找到超新星。但問題在于,其他天體也會發(fā)出警報,例如會發(fā)生亮度變化的恒星(變星)、活動星系核 (AGN) 和小行星,而且有時也會出現(xiàn)測量誤差(誤報)。幸運的是,科學圖像、參照圖像和差值圖像中的一些可區(qū)分特征,能夠幫助我們確定警報來自超新星還是其他天體。我們需要有效地區(qū)分以下五類天體。

只需使用第一個警報就能區(qū)分這五類天體:這些分別是每一類天體的五個示例警報,每個警報都包含科學圖像、參照圖像和差值圖像

簡而言之,活動星系核往往出現(xiàn)在星系中心。超新星通常出現(xiàn)在宿主星系附近。我們會在太陽系平面附近觀測到小行星,并且,它們不會出現(xiàn)在模板圖像中。變星大多會在銀河系中觀測到,因此其圖像中還可以看到其他恒星。出現(xiàn)誤報的原因有很多種,包括相機中有壞的像素點、用于生成差值圖像的減法出錯、宇宙射線(警報圖像中心非常明亮、密集且銳利的區(qū)域)等。

如上文所述,人們不可能手動檢查每一個警報,所以我們需要一種自動分類的方法,這樣天文學家就可以查看更有可能是超新星的最有意義的來源。


利用神經(jīng)網(wǎng)絡尋找超新星

由于我們已大致了解上述五類天體的警報圖像之間的差異,因此原則上我們可以計算特定特征以正確對這些圖像進行分類。但是,手動設計特征通常非常難,并且需要長時間的反復試驗。正因如此,我們決定通過訓練卷積神經(jīng)網(wǎng)絡 (CNN) 來解決分類問題(Carrasco-Davis 等人,2020 年)。在本研究中,我們僅使用第一個警報來快速找出超新星。

Carrasco-Davis 等人,2020 年
https://arxiv.org/abs/2008.03309

我們通過在訓練集中加入每個圖像旋轉(zhuǎn) 90° 后的副本來提供具有旋轉(zhuǎn)不變性的架構(gòu),然后對圖像的每個旋轉(zhuǎn)后版本的密集表示應用平均池化。在此問題上加上旋轉(zhuǎn)不變性非常有用,因為警報圖像中的結(jié)構(gòu)沒有固定的顯示方向(Cabrera-Vives 等人,2017 年、E. Reyes 等人,2018 年)。我們還添加了警報中包含的部分元數(shù)據(jù),例如,天空坐標上的位置、到其他已知物體的距離,以及大氣狀況指標等。在使用交叉熵訓練模型后,即使出現(xiàn)分類器預測錯類別的情況,分類結(jié)果的概率也高度集中在 0 或 1 附近。如果專家要在模型給出預測后,進一步篩選出超新星,那么這個方法就不太方便。飽和值 0 或 1 無法提供與模型錯誤分類的概率,以及做出的第二或第三可能的類別預測有關的數(shù)據(jù)分析。

Cabrera-Vives 等人,2017 年
https://doi.org/10.3847/1538-4357/836/1/97

E. Reyes 等人,2018 年
https://doi.org/10.1109/IJCNN.2018.8489627

因此,除損失函數(shù)中的交叉熵項之外,我們還添加了額外的項來盡可能地提高預測的熵,以分散輸出概率的值(Pereyra 等人,2017 年)。此舉改善了預測的細粒度或定義,模型輸出的概率不再聚集,而是分散在 0 到 1 的整個范圍內(nèi),因此模型做出的預測更易理解,進而能夠幫助天文學家選擇符合條件的超新星候選者進行報告跟進。

Pereyra 等人,2017 年
https://arxiv.org/abs/1701.06548

具有增強的旋轉(zhuǎn)不變性的卷積神經(jīng)網(wǎng)絡:為每個輸入圖像創(chuàng)建旋轉(zhuǎn)副本并將其饋送到相同的 CNN 架構(gòu),然后在將其與元數(shù)據(jù)串聯(lián)之前,在密集層中應用平均池化。最后,應用另外兩個完全連接的層和 softmax 以獲得預測結(jié)果

我們對 ZTF 整個覆蓋范圍內(nèi)均勻分布在太空中的 40 萬個物體進行了推斷,以對模型預測結(jié)果進行合理性檢查。檢查結(jié)果證明,CNN 預測的每個天體類別的空間分布均符合預期(基于每個天體的性質(zhì))。

例如,AGN 和超新星 (SNe) 大多會在銀河平面之外(即河外天體)找到,因為有其他天體的遮擋,所以不太可能透過銀河平面看到更遠位置上的天體。模型正確預測了靠近銀道面(銀道緯度接近 0)的天體數(shù)量較少。在銀道內(nèi)正確發(fā)現(xiàn)了具有較高密度的變星。和預期的一樣,在太陽系平面(也稱為黃道,用黃線標出)附近發(fā)現(xiàn)了小行星,而誤報也隨處可見。在大型未標記數(shù)據(jù)集中進行推斷,可為我們提供有關訓練集內(nèi)偏差的重要線索,還可幫助我們確定 CNN 所使用的重要元數(shù)據(jù)。

我們發(fā)現(xiàn),雖然圖像(科學圖像、參照圖像和差值圖像)內(nèi)的信息足以讓我們在訓練集中獲得良好的分類結(jié)果,但是整合來自元數(shù)據(jù)的信息對獲得預測結(jié)果的正確空間分布至關重要。

未標記天體集的空間分布:每張圖均采用銀道坐標。銀道的緯度中心位于銀河系,因此,維度接近 0 也意味著更接近銀道面。銀道經(jīng)度表示我們在銀道面內(nèi)看到的是銀盤的哪一部分。黃線表示太陽系平面(黃道)

Supernova Hunter

此項目的重要組成部分是網(wǎng)絡界面,通過此界面,天文學家可瀏覽由我們的神經(jīng)網(wǎng)絡按照該候選者屬于超新星的置信度排序的候選天體名單。Supernova Hunter 是一款可視化工具,可用于展示與警報相關的重要信息,天文學家可利用此工具選擇應將哪些天體報告為超新星。此工具還設有一個按鈕,可用來報告模型做出的錯誤分類。我們收到報告的錯誤分類后,會將其添加到訓練集中,并會在稍后手動標記這些錯誤示例來改進模型。

Supernova Hunter
https://snhunter.alerce.online/

Supernova Hunter:瀏覽超新星候選者的用戶界面。此界面顯示一串警報列表,而這些警報有很大的可能性是超新星。對于每個警報,警報的圖像、天體的位置和元數(shù)據(jù)均會顯示在網(wǎng)頁上

通過使用神經(jīng)網(wǎng)絡分類器和 Supernova Hunter,我們已利用光譜方法確認出 394 個超新星,并在 2019 年 6 月 26 日至 2020 年 7 月 21 日期間向 Transient Name Server 報告了 3060 個超新星候選者,平均每天報告 9.2 個。這樣的發(fā)現(xiàn)速度可極大提高在爆炸早期找到的超新星數(shù)量。


展望未來

目前,我們正在努力改善模型的分類性能,以獲得更符合條件的超新星候選者,并減少報告過程中所需的專家助手人數(shù)。理想情況下,我們希望擁有一個能夠自動報告每個可能的超新星候選者的系統(tǒng)。

此外,我們還希望擴展我們模型的功能,讓其能夠使用多個時間戳。我們開發(fā)了一個神經(jīng)網(wǎng)絡模型,此模型能夠接收一系列的圖像而不是單個時間戳的圖像,因此,每當特定物體有新圖像可用時,此模型就能夠整合新收取的信息,從而可以提高其對每個類別的預測結(jié)果的置信度。

使用多個時間戳
https://doi.org/10.1088/1538-3873/aaef12

我們研究工作的另一大重點是使用異常檢測技術發(fā)現(xiàn)稀有物體。這項任務非常重要,因為得益于新型望遠鏡空前龐大的采樣率和每次觀測的空間深度,我們很可能能夠發(fā)現(xiàn)新的天體類型。


我們認為這種分析大量天文數(shù)據(jù)的新方法不僅有用,而且很有必要。為科學界提供數(shù)據(jù)的管理、分類和再分發(fā)是利用天文數(shù)據(jù)進行科學研究的重要一環(huán)。這項任務需要整合來自不同領域的專業(yè)知識,例如計算機科學、天文學、工程學和數(shù)學。隨著新型現(xiàn)代望遠鏡的建成(如薇拉·魯賓天文臺),勢必會極大地改變天文學家研究天體的方式,而作為 ALeRCE 代理,我們將做好一切準備來實現(xiàn)這一點。如需了解詳細信息,請訪問我們的網(wǎng)站,或瀏覽我們的論文:ALeRCE 演示論文,文中描述了完整的處理流水線;時間戳分類器(本文中描述的研究項目);以及光曲線分類器,該分類器通過使用稱為光曲線的時間序列,提供了更復雜的分類和更大的分類學。

責任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4814

    瀏覽量

    103570
  • 圖像
    +關注

    關注

    2

    文章

    1094

    瀏覽量

    41240
  • 光譜儀
    +關注

    關注

    2

    文章

    1100

    瀏覽量

    31662

原文標題:神經(jīng)網(wǎng)絡破解天文難題,快速探測超新星

文章出處:【微信號:tensorflowers,微信公眾號:Tensorflowers】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?661次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?914次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?765次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?851次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結(jié)構(gòu) BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:13 ?844次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構(gòu)建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡神經(jīng)網(wǎng)絡由多個神經(jīng)元組成,神經(jīng)元之間通過
    的頭像 發(fā)表于 01-23 13:52 ?528次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1183次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?1865次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 10:05 ?1628次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    在深度學習領域,循環(huán)神經(jīng)網(wǎng)絡(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡應運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1208次閱讀

    LSTM神經(jīng)網(wǎng)絡的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),它能夠?qū)W習長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1578次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準、閉環(huán)反饋等應用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?661次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101

    matlab 神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    如何構(gòu)建多層神經(jīng)網(wǎng)絡

    構(gòu)建多層神經(jīng)網(wǎng)絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡模型,包括模型設計、數(shù)據(jù)預處理、模型訓練、評估以及優(yōu)化等方面的內(nèi)
    的頭像 發(fā)表于 07-19 17:19 ?1555次閱讀