一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用于低內(nèi)存 IoT 設(shè)備的神經(jīng)網(wǎng)絡(luò)

工程師鄧生 ? 來源:搜狐網(wǎng) ? 作者:互聯(lián)隱財 ? 2020-11-04 10:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新的神經(jīng)網(wǎng)絡(luò)。

一位來自俄羅斯的科學(xué)家開發(fā)了一種新的神經(jīng)網(wǎng)絡(luò)架構(gòu),并測試了其在識別手寫數(shù)字上的學(xué)習(xí)能力。網(wǎng)絡(luò)智能被混沌放大,分類準確率達到96.3%。該網(wǎng)絡(luò)可用于具有少量 RAM微控制器,并嵌入到鞋子或冰箱等家居用品中,使其“智能”。這項研究發(fā)表在《電子》上。

今天,尋找新的神經(jīng)網(wǎng)絡(luò),可以操作微控制器與少量的隨機訪問內(nèi)存(RAM)是特別重要的。為了進行比較,在普通現(xiàn)代計算機中,隨機訪問內(nèi)存以千兆字節(jié)為單位計算。盡管微控制器的處理能力比筆記本電腦智能手機要小得多,但它們體積更小,可以與家用物品進行接口。智能門、冰箱、鞋子、眼鏡、水壺和咖啡壺為所謂的環(huán)境智能奠定了基礎(chǔ)。這個詞表示一個互聯(lián)的智能設(shè)備的環(huán)境。

環(huán)境智能的一個例子是智能家居。內(nèi)存有限的設(shè)備無法存儲大量密鑰,用于安全數(shù)據(jù)傳輸和神經(jīng)網(wǎng)絡(luò)設(shè)置陣列。它阻止將人工智能引入物聯(lián)網(wǎng)設(shè)備,因為它們?nèi)狈λ璧挠嬎隳芰?。但是,人工智能將使智能設(shè)備在分析和決策上花費更少的時間,更好地了解用戶,并友好地幫助他們。因此,在創(chuàng)造環(huán)境情報方面,例如在保健領(lǐng)域,可以出現(xiàn)許多新的機會。

俄羅斯彼得羅扎沃茨克州立大學(xué)的安德烈·維利奇科(Andrei Velichko)創(chuàng)建了一種新的神經(jīng)網(wǎng)絡(luò)架構(gòu),允許高效使用少量 RAM,為將低功耗設(shè)備引入物聯(lián)網(wǎng)創(chuàng)造了機會。網(wǎng)絡(luò)稱為 LogNNet,是一個饋送神經(jīng)網(wǎng)絡(luò),其中信號僅從輸入定向到輸出。它對傳入信號使用確定性混沌濾波器。系統(tǒng)隨機混合輸入信息,但同時從最初不可見的信息中提取有價值的數(shù)據(jù)。儲層神經(jīng)網(wǎng)絡(luò)也使用類似的機制。為了產(chǎn)生混沌,應(yīng)用了一個簡單的邏輯映射方程,其中下一個值是根據(jù)前一個值計算的。該方程通常用于人口生物學(xué),并作為計算混沌值序列的簡單方程的示例。這樣,簡單方程存儲處理器計算的無限隨機數(shù)集,網(wǎng)絡(luò)體系結(jié)構(gòu)使用它們并消耗更少的 RAM。

安德烈·維利奇科

這位科學(xué)家在 MNIST 數(shù)據(jù)庫中的手寫數(shù)字識別上測試了他的神經(jīng)網(wǎng)絡(luò),該數(shù)據(jù)庫被認為是訓(xùn)練神經(jīng)網(wǎng)絡(luò)識別圖像的標準。該數(shù)據(jù)庫包含 70,000 多個手寫數(shù)字。其中6萬個用于訓(xùn)練神經(jīng)網(wǎng)絡(luò),另外10,000個用于網(wǎng)絡(luò)測試。網(wǎng)絡(luò)中的神經(jīng)元和混亂性越多,識別圖像的越好。網(wǎng)絡(luò)實現(xiàn)的最大精度為96.3%,而開發(fā)的體系結(jié)構(gòu)使用的 RAM 不超過 29 KB。此外,LogNNet 在 1-2kB 范圍內(nèi)使用非常小的 RAM 尺寸展示了有希望的結(jié)果。微型控制器,Atmega328,可以嵌入到智能門,甚至智能鞋墊,具有大致相同的內(nèi)存量。

“由于這一發(fā)展,物聯(lián)網(wǎng)的新機遇正在打開,因為任何配備低功耗微型控制器的設(shè)備都可以使用人工智能供電。這樣,就為智能處理外圍設(shè)備上的信息而打開一條路徑,而無需將數(shù)據(jù)發(fā)送到云服務(wù),從而改進了智能家居等操作。這是彼得羅扎沃茨克州立大學(xué)的科學(xué)家積極研究的物聯(lián)網(wǎng)技術(shù)發(fā)展的重要貢獻。此外,這項研究還概述了研究混亂對人工智能影響的替代方法,”安德烈·維利奇科說。

責(zé)任編輯:PSY

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103639
  • 內(nèi)存
    +關(guān)注

    關(guān)注

    8

    文章

    3125

    瀏覽量

    75271
  • 智能家居
    +關(guān)注

    關(guān)注

    1934

    文章

    9806

    瀏覽量

    190575
  • IOT
    IOT
    +關(guān)注

    關(guān)注

    187

    文章

    4305

    瀏覽量

    201876
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?924次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?773次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別中應(yīng)用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?680次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1202次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個小的矩陣,用于在輸入圖像上滑動,提取局部特征。 滑動窗口:將卷積核在輸入圖像上滑動,每次滑
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實時機器學(xué)習(xí)算法,進行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    許多種類型,但本文將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò)(CNN),其主要應(yīng)用領(lǐng)域是對輸入數(shù)據(jù)的模式識別和對象分類。CNN是一種用于深度學(xué)習(xí)的 人工神經(jīng)網(wǎng)絡(luò) 。這種網(wǎng)絡(luò)由輸入層、若干卷積層和輸出層組成。
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    、低功耗等特點,逐漸成為深度神經(jīng)網(wǎng)絡(luò)在邊緣計算和設(shè)備端推理的重要硬件平臺。本文將詳細探討FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,包括其優(yōu)勢、設(shè)計流程、關(guān)鍵技術(shù)以及實際應(yīng)用案例。
    的頭像 發(fā)表于 07-24 10:42 ?1206次閱讀