一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用Cortex將PyTorch模型部署到生產(chǎn)中

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2020-12-10 20:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從 NLP 到計算機(jī)視覺都可以通過 Cortex來非常方便的部署PyTorch模型。
作者:Caleb Kaiser
編譯:ronghuaiyang
首發(fā):AI公園公眾號

Using PyTorch Models in Production with Cortex

該框架的 python 風(fēng)格,其學(xué)習(xí)曲線的溫和性,以及它對快速和簡單原型的方便實(shí)現(xiàn),使 PyTorch 明顯成為研究人員的最愛。因此,它正在推動一些最酷的機(jī)器學(xué)習(xí)項目:

Transformers,Hugging Face 生成的廣泛流行的自然語言處理(NLP)庫,是建立在 PyTorch 上的。

Selene,生物前沿 ML 庫,建在 PyTorch 上。

CrypTen,這個熱門的、新的、關(guān)注隱私的機(jī)器學(xué)習(xí)框架是建立在 PyTorch 上的。

在 ML 的幾乎任何領(lǐng)域,從計算機(jī)視覺到 NLP 再到計算生物學(xué),你都會發(fā)現(xiàn) PyTorch 在前沿為實(shí)驗(yàn)提供能量。

然而,最自然的問題是如何將這些實(shí)驗(yàn)合并到軟件中。如何從“跨語言語言模型”轉(zhuǎn)換為谷歌翻譯?

在這篇博客文章中,我們將了解在生產(chǎn)環(huán)境中使用 PyTorch 模型意味著什么,然后介紹一種允許部署任何 PyTorch 模型以便在軟件中使用的方法。

在生產(chǎn)中使用 PyTorch 意味著什么?

根據(jù)生產(chǎn)環(huán)境的不同,在生產(chǎn)環(huán)境中運(yùn)行機(jī)器學(xué)習(xí)可能意味著不同的事情。一般來說,在生產(chǎn)中有兩類機(jī)器學(xué)習(xí)的設(shè)計模式:

通過推理服務(wù)器提供一個預(yù)測 API。這是在通用軟件開發(fā)中使用的標(biāo)準(zhǔn)方法,即不是移動軟件或獨(dú)立設(shè)備。

嵌入。將你的模型直接嵌入到你的應(yīng)用程序中。這通常用于機(jī)器人和獨(dú)立設(shè)備,有時也用于移動應(yīng)用程序。

如果你打算直接將你的模型嵌入到你的應(yīng)用程序中,那么你應(yīng)該看看 PyTorch 的 TorchScript。使用即時編譯,PyTorch 可以將 Python 編譯成不需要 Python 解釋器就可以運(yùn)行的 TorchScript,這對于資源受限的部署目標(biāo)(比如移動設(shè)備)非常有用。

在大多數(shù)情況下,你會使用模型服務(wù)器。今天你看到的許多 ML 應(yīng)用程序 — 從你最喜歡的流媒體服務(wù)背后的推薦引擎到在線搜索欄中的自動完成功能—都依賴于這種部署形式,更確切地說,依賴于實(shí)時推理。

在實(shí)時推理中,一個模型通常被部署為一個微服務(wù)(通常是一個 JSON API),通過它,一個軟件可以查詢模型并接收預(yù)測。

讓我們以 Facebook 人工智能的 RoBERTa 為例,一個領(lǐng)先的 NLP 模型。它通過分析去掉一個單詞的句子(或“屏蔽詞”),并猜測屏蔽詞是什么,來進(jìn)行推斷。例如,如果你要使用一個預(yù)先訓(xùn)練好的 RoBERTa 模型來猜測一個句子中的下一個單詞,你要使用的 Python 方法是這樣的,非常簡單:

roberta.fill_mask(input_text + " ")

事實(shí)證明,在序列中預(yù)測缺失的單詞正是 autocomplete 等功能背后的功能。要在應(yīng)用程序中實(shí)現(xiàn) autocomplete,可以將 RoBERTa 部署為 JSON API,然后在應(yīng)用程序中使用用戶的輸入在 RoBERTa 節(jié)點(diǎn)上進(jìn)行查詢。

設(shè)置 JSON API 聽起來相當(dāng)簡單,但是將模型部署為微服務(wù)實(shí)際上需要大量的基礎(chǔ)設(shè)施工作。

你需要自動控制流量的波動。你需要監(jiān)控你的預(yù)測。你需要處理模型更新。你需要了解日志記錄。非常多的工作。

那么,問題是如何將 RoBERTa 部署為一個 JSON API,而不需要手動滾動所有這些自定義基礎(chǔ)設(shè)施?

將 PyTorch 模型與 Cortex 一起投入生產(chǎn)

你可以使用 Cortex 自動化部署 PyTorch 模型所需的大部分基礎(chǔ)設(shè)施工作,這是一個將模型作為 api 部署到 AWS 上的開源工具。這篇文章并不是一個完整的 Cortex 使用指南,只是一個高層次的 Cortex 使用方法,你所需要的是:

提供推斷的 Python 腳本

定義你的 API 的配置文件

Cortex CLI 啟動你的部署

這種方法并不局限于 RoBERTa。想要為你的圖像自動生成 alt 文本,使你的網(wǎng)站更容易訪問?你可以部署一個 AlexNet 模型,使用 PyTorch 和 Cortex 來標(biāo)記圖像。

那語言分類器呢,比如 Chrome 用來檢測頁面不是用默認(rèn)語言寫的那個?fastText 是這個任務(wù)的完美模型,你可以使用 PyTorch 和 Cortex 部署它。

使用 Cortex,你可以將許多由 PyTorch 支持的 ML 特性添加到你的應(yīng)用程序中進(jìn)行實(shí)時推斷。

PyTorch 用到生產(chǎn)中

有超過 25 個研究模型儲存在 PyTorch Hub],從 NLP 到計算機(jī)視覺。所有這些都可以通過 Cortex 來實(shí)現(xiàn),使用的過程和我們剛才演示的一樣。

PyTorch 團(tuán)隊無疑在他們的路線圖上有更多的以生產(chǎn)為中心的特性,但是僅僅看看到目前為止所取得的進(jìn)展,很明顯 PyTorch 不是為生產(chǎn)而構(gòu)建的框架的觀點(diǎn)已經(jīng)過時了。

關(guān)注圖像處理,自然語言處理,機(jī)器學(xué)習(xí)等人工智能領(lǐng)域。
歡迎關(guān)注微信公眾號

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249698
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    809

    瀏覽量

    13973
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何使用Docker部署模型

    隨著深度學(xué)習(xí)和大模型的快速發(fā)展,如何高效地部署這些模型成為了一個重要的挑戰(zhàn)。Docker 作為一種輕量級的容器化技術(shù),能夠模型及其依賴環(huán)境
    的頭像 發(fā)表于 05-24 16:39 ?349次閱讀

    電機(jī)高效再制造在企業(yè)生產(chǎn)中的應(yīng)用

    高效再制造在企業(yè)生產(chǎn)中的應(yīng)用.pdf (免責(zé)聲明:本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請第一時間告知,刪除內(nèi)容!)
    發(fā)表于 04-07 17:31

    K230D部署模型失敗的原因?

    MicroPython部署的無法正常運(yùn)行,采用C++版本的無法實(shí)現(xiàn)部署 嘗試解決過程 1.考慮可能是固件不匹配的問題,重新燒錄了流程(生成模型后給的readme)中要求的固件,依舊無
    發(fā)表于 03-11 06:19

    如何部署OpenVINO?工具套件應(yīng)用程序?

    編寫代碼并測試 OpenVINO? 工具套件應(yīng)用程序后,必須將應(yīng)用程序安裝或部署生產(chǎn)環(huán)境中的目標(biāo)設(shè)備。 OpenVINO?部署管理器指南包含有關(guān)如何輕松使用
    發(fā)表于 03-06 08:23

    使用OpenVINO? 2021.4經(jīng)過訓(xùn)練的自定義PyTorch模型加載為IR格式時遇到錯誤怎么解決?

    使用 OpenVINO? 2021.4 經(jīng)過訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時遇到錯誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    并非易事,它涉及從選擇合適的算法架構(gòu)針對特定硬件平臺進(jìn)行優(yōu)化等一系列復(fù)雜的工作。 接下來,我們詳細(xì)介紹如何在資源受限的邊緣設(shè)備上成功部署目標(biāo)檢測
    發(fā)表于 12-19 14:33

    AI模型部署邊緣設(shè)備的奇妙之旅:如何實(shí)現(xiàn)手寫數(shù)字識別

    新的數(shù)據(jù)樣本,另一個是判別器用來判斷這些樣本的真實(shí)性。兩者相互競爭,共同進(jìn)化,最終實(shí)現(xiàn)高質(zhì)量的數(shù)據(jù)合成。 2.4 模型優(yōu)化技術(shù) 在深度學(xué)習(xí)模型部署
    發(fā)表于 12-06 17:20

    Arm KleidiAI助力提升PyTorch上LLM推理性能

    生成式人工智能 (AI) 正在科技領(lǐng)域發(fā)揮關(guān)鍵作用,許多企業(yè)已經(jīng)開始大語言模型 (LLM) 集成云端和邊緣側(cè)的應(yīng)用中。生成式 AI 的引入也使得許多框架和庫得以發(fā)展。其中,PyTorch
    的頭像 發(fā)表于 12-03 17:05 ?1494次閱讀
    Arm KleidiAI助力提升<b class='flag-5'>PyTorch</b>上LLM推理性能

    在設(shè)備上利用AI Edge Torch生成式API部署自定義大語言模型

    ,從而無縫地新的設(shè)備端生成式 AI 模型部署邊緣設(shè)備上。本文是 Google AI Edge 博客連載的第二篇。上一篇文章為大家介紹了 Google AI Edge Torch,該
    的頭像 發(fā)表于 11-14 10:23 ?1153次閱讀
    在設(shè)備上利用AI Edge Torch生成式API<b class='flag-5'>部署</b>自定義大語言<b class='flag-5'>模型</b>

    測徑儀 測測長儀是如何應(yīng)用在卷煙生產(chǎn)中的?

    關(guān)鍵字:卷煙測徑儀,卷煙測長儀,煙草測徑儀,煙草測長儀,煙草機(jī)械測徑儀,卷煙設(shè)備,煙草設(shè)備, 測徑儀和測長儀在卷煙生產(chǎn)中發(fā)揮著至關(guān)重要的作用,它們能夠精確測量卷煙的物理尺寸,確保產(chǎn)品質(zhì)量的一致性
    發(fā)表于 11-13 13:58

    PyTorch 數(shù)據(jù)加載與處理方法

    PyTorch 是一個流行的開源機(jī)器學(xué)習(xí)庫,它提供了強(qiáng)大的工具來構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型。在構(gòu)建模型之前,一個重要的步驟是加載和處理數(shù)據(jù)。 1. PyTorch 數(shù)據(jù)加載基礎(chǔ) 在
    的頭像 發(fā)表于 11-05 17:37 ?942次閱讀

    如何在 PyTorch 中訓(xùn)練模型

    PyTorch 是一個流行的開源機(jī)器學(xué)習(xí)庫,廣泛用于計算機(jī)視覺和自然語言處理等領(lǐng)域。它提供了強(qiáng)大的計算圖功能和動態(tài)圖特性,使得模型的構(gòu)建和調(diào)試變得更加靈活和直觀。 數(shù)據(jù)準(zhǔn)備 在訓(xùn)練模型之前,首先需要
    的頭像 發(fā)表于 11-05 17:36 ?934次閱讀

    使用PyTorch在英特爾獨(dú)立顯卡上訓(xùn)練模型

    PyTorch 2.5重磅更新:性能優(yōu)化+新特性》中的一個新特性就是:正式支持在英特爾獨(dú)立顯卡上訓(xùn)練模型!
    的頭像 發(fā)表于 11-01 14:21 ?2065次閱讀
    使用<b class='flag-5'>PyTorch</b>在英特爾獨(dú)立顯卡上訓(xùn)練<b class='flag-5'>模型</b>

    新手小白怎么通過云服務(wù)器跑pytorch

    安裝PyTorch的步驟可以根據(jù)不同的操作系統(tǒng)和需求有所差異,通過云服務(wù)器運(yùn)行PyTorch的過程主要包括選擇GPU云服務(wù)器平臺、配置服務(wù)器環(huán)境、部署和運(yùn)行PyTorch
    的頭像 發(fā)表于 09-25 11:35 ?571次閱讀

    基于Pytorch訓(xùn)練并部署ONNX模型在TDA4應(yīng)用筆記

    電子發(fā)燒友網(wǎng)站提供《基于Pytorch訓(xùn)練并部署ONNX模型在TDA4應(yīng)用筆記.pdf》資料免費(fèi)下載
    發(fā)表于 09-11 09:24 ?0次下載
    基于<b class='flag-5'>Pytorch</b>訓(xùn)練并<b class='flag-5'>部署</b>ONNX<b class='flag-5'>模型</b>在TDA4應(yīng)用筆記