一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度神經(jīng)網(wǎng)絡(luò),通過(guò)使用數(shù)學(xué)模型來(lái)處理圖像

倩倩 ? 來(lái)源:新經(jīng)網(wǎng) ? 作者:新經(jīng)網(wǎng) ? 2020-12-16 10:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

它們具有看似復(fù)雜的結(jié)果,但也有可能被愚弄,范圍從相對(duì)無(wú)害-將動(dòng)物誤識(shí)別為另一動(dòng)物-到引導(dǎo)自動(dòng)駕駛汽車的網(wǎng)絡(luò)將停車標(biāo)志誤解為指示停車標(biāo)志的潛在危險(xiǎn)是可以安全進(jìn)行的。

休斯頓大學(xué)的一位哲學(xué)家在發(fā)表于《自然機(jī)器智能》上的一篇論文中暗示,關(guān)于這些假定故障背后原因的普遍假設(shè)可能是錯(cuò)誤的,這些信息對(duì)于評(píng)估這些網(wǎng)絡(luò)的可靠性至關(guān)重要。

隨著機(jī)器學(xué)習(xí)和其他形式的人工智能越來(lái)越深入地融入社會(huì),從自動(dòng)柜員機(jī)到網(wǎng)絡(luò)安全系統(tǒng),其用途廣泛,UH哲學(xué)副教授卡梅倫·巴克納(Cameron Buckner)表示,了解由什么導(dǎo)致的明顯故障的來(lái)源至關(guān)重要。

研究人員稱其為“對(duì)抗性例子”,是指當(dāng)深度神經(jīng)網(wǎng)絡(luò)系統(tǒng)遇到用于構(gòu)建網(wǎng)絡(luò)的訓(xùn)練輸入之外的信息時(shí),會(huì)誤判圖像或其他數(shù)據(jù)。它們很罕見(jiàn),被稱為“對(duì)抗性”,因?yàn)樗鼈兺ǔJ怯闪硪粋€(gè)機(jī)器學(xué)習(xí)網(wǎng)絡(luò)創(chuàng)建或發(fā)現(xiàn)的-機(jī)器學(xué)習(xí)領(lǐng)域中的一種邊緣技術(shù),介于創(chuàng)建復(fù)雜示例的更復(fù)雜方法與檢測(cè)和避免它們的更復(fù)雜方法之間。

巴克納說(shuō):“這些對(duì)抗性事件中的一些反而可能是人工產(chǎn)物,為了更好地了解這些網(wǎng)絡(luò)的可靠性,我們需要更好地了解它們是什么?!?/p>

換句話說(shuō),不發(fā)火可能是由網(wǎng)絡(luò)需要處理的內(nèi)容和所涉及的實(shí)際模式之間的相互作用引起的。這與完全被誤解不是完全一樣的。

巴克納寫道:“理解對(duì)抗性例子的含義需要探索第三種可能性:至少其中一些模式是人工制品。”“……因此,目前簡(jiǎn)單地丟棄這些模式既有代價(jià),也有天真地使用它們的危險(xiǎn)?!?/p>

導(dǎo)致這些機(jī)器學(xué)習(xí)系統(tǒng)犯錯(cuò)誤的對(duì)抗事件不一定是故意的瀆職造成的,但這是最高的風(fēng)險(xiǎn)所在。

巴克納說(shuō):“這意味著惡意行為者可能欺騙依賴于本來(lái)可靠的網(wǎng)絡(luò)的系統(tǒng)?!薄澳怯邪踩珣?yīng)用程序?!?/p>

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過(guò)對(duì)無(wú)刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來(lái)訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問(wèn)題。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?680次閱讀

    深度學(xué)習(xí)入門:簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)
    的頭像 發(fā)表于 01-23 13:52 ?530次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計(jì)的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過(guò)時(shí),現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進(jìn)性能
    的頭像 發(fā)表于 01-09 10:24 ?1201次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在
    的頭像 發(fā)表于 11-15 14:52 ?846次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)圖像處理中的應(yīng)用

    長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長(zhǎng)期依賴關(guān)系。雖然LSTM最初是為處理序列數(shù)據(jù)設(shè)計(jì)的,但近年來(lái),它在圖像
    的頭像 發(fā)表于 11-13 10:12 ?1621次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    必須通過(guò)決策閾值做出決定。 另一個(gè)區(qū)別是AI并不依賴固定的規(guī)則,而是要經(jīng)過(guò)訓(xùn)練。訓(xùn)練過(guò)程需要將大量貓的圖像展示給神經(jīng)網(wǎng)絡(luò)以供其學(xué)習(xí)。最終,神經(jīng)網(wǎng)絡(luò)將能夠獨(dú)立識(shí)別
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的
    的頭像 發(fā)表于 07-24 10:42 ?1206次閱讀

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個(gè)在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問(wèn)題時(shí)。在本文中,我們將深入探討如何從頭
    的頭像 發(fā)表于 07-19 17:19 ?1569次閱讀