一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于內(nèi)存的人工智能神經(jīng)網(wǎng)絡(luò)架構(gòu)

姚小熊27 ? 來源:人工智能實(shí)驗(yàn)室 ? 作者:人工智能實(shí)驗(yàn)室 ? 2020-12-18 13:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在過去十年左右的時(shí)間里,研究人員已經(jīng)開發(fā)了多種基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的計(jì)算模型。盡管已發(fā)現(xiàn)許多這些模型在特定任務(wù)上表現(xiàn)良好,但它們并不總是能夠識(shí)別可應(yīng)用于新問題的迭代,順序或算法策略。

過去的研究發(fā)現(xiàn),添加外部存儲(chǔ)器組件可以提高神經(jīng)網(wǎng)絡(luò)獲取這些策略的能力。但是,即使使用外部存儲(chǔ)器,它們也容易出錯(cuò),對(duì)提供給他們的數(shù)據(jù)變化敏感,并且需要大量的訓(xùn)練數(shù)據(jù)才能很好地發(fā)揮作用。

達(dá)姆施塔特技術(shù)大學(xué)的研究人員最近推出了一種新的基于記憶增強(qiáng)的基于ANN的體系結(jié)構(gòu),該體系結(jié)構(gòu)可以學(xué)習(xí)解決問題的抽象策略。這種結(jié)構(gòu)在將算法計(jì)算與依賴于數(shù)據(jù)的操作分開,將算法處理的信息流劃分為兩個(gè)不同的“流”。

研究人員在論文中寫道:“擴(kuò)展具有外部記憶的神經(jīng)網(wǎng)絡(luò)已經(jīng)提高了他們學(xué)習(xí)這種策略的能力,但是它們?nèi)匀蝗菀壮霈F(xiàn)數(shù)據(jù)變化,難以學(xué)習(xí)可擴(kuò)展和可轉(zhuǎn)移的解決方案,并且需要大量的訓(xùn)練數(shù)據(jù)?!?“我們提出了神經(jīng)哈佛計(jì)算機(jī),這是一種基于內(nèi)存的基于網(wǎng)絡(luò)的體系結(jié)構(gòu),該體系結(jié)構(gòu)通過將算法操作與數(shù)據(jù)操作解耦而采用抽象,通過拆分信息流和分離的模塊來實(shí)現(xiàn)。”

神經(jīng)哈佛計(jì)算機(jī)或NHC將輸入算法的信息流分為兩個(gè)不同的流,即數(shù)據(jù)流(包含特定于數(shù)據(jù)的操作)和控制流(包含算法操作)。最終,它可以區(qū)分與數(shù)據(jù)相關(guān)的模塊和算法模塊,從而創(chuàng)建兩個(gè)獨(dú)立但又耦合的存儲(chǔ)器。

NHC具有三個(gè)主要的算法模塊,分別稱為控制器,存儲(chǔ)器和總線。這三個(gè)組件具有不同的功能,但彼此交互以獲取可應(yīng)用于將來任務(wù)的抽象。研究人員在論文中解釋說:“這種抽象機(jī)制和進(jìn)化訓(xùn)練使學(xué)習(xí)健壯和可擴(kuò)展的算法解決方案成為可能?!?/p>

研究人員通過使用NHC訓(xùn)練和運(yùn)行11種不同的算法來評(píng)估NHC。然后,他們測(cè)試了這些算法的性能,以及它們的泛化和抽象能力。研究人員發(fā)現(xiàn),NHC可以可靠地運(yùn)行所有11種算法,同時(shí)還可以使它們?cè)诒茸畛跤?xùn)練要完成的任務(wù)復(fù)雜的任務(wù)上表現(xiàn)出色?!霸?1種復(fù)雜程度各異的算法中,我們證明NHC可靠地學(xué)習(xí)了具有強(qiáng)大概括性和抽象性的算法解決方案,可以完美地概括和擴(kuò)展到任意任務(wù)配置和復(fù)雜性,而這些復(fù)雜性和復(fù)雜性遠(yuǎn)遠(yuǎn)超出了訓(xùn)練期間所看到的,并且與數(shù)據(jù)無關(guān)表示法和任務(wù)領(lǐng)域”,

該研究人員小組最近進(jìn)行的研究證實(shí)了使用外部存儲(chǔ)組件來增強(qiáng)復(fù)雜程度不同的任務(wù)中基于神經(jīng)網(wǎng)絡(luò)的體系結(jié)構(gòu)的性能和可推廣性的潛力。將來,NHC體系結(jié)構(gòu)可用于合并和改進(jìn)不同ANN的功能,從而幫助開發(fā)可識(shí)別有用策略的模型,從而基于新數(shù)據(jù)做出準(zhǔn)確的預(yù)測(cè)。
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103666
  • 內(nèi)存
    +關(guān)注

    關(guān)注

    8

    文章

    3125

    瀏覽量

    75278
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249617
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計(jì)的人工智能微控制器技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78000是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
    的頭像 發(fā)表于 05-08 11:42 ?295次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>加速度計(jì)<b class='flag-5'>的人工智能</b>微控制器技術(shù)手冊(cè)

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制器技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78002是一款新型的AI微控制器,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過驗(yàn)證
    的頭像 發(fā)表于 05-08 10:16 ?217次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>加速器<b class='flag-5'>的人工智能</b>微控制器技術(shù)手冊(cè)

    開售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經(jīng)網(wǎng)絡(luò)處理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系統(tǒng)
    發(fā)表于 04-23 10:55

    【「芯片通識(shí)課:一本書讀懂芯片技術(shù)」閱讀體驗(yàn)】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實(shí)現(xiàn)人工智能神經(jīng)網(wǎng)絡(luò)計(jì)算的專用處理器,主要用于人工智能深度學(xué)習(xí)模型的加速
    發(fā)表于 04-02 17:25

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?926次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>架構(gòu)</b>方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks, FNN),是一種最簡單
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的一場(chǎng)革命。在人工智能硬件加速中,嵌入式系統(tǒng)以其獨(dú)特的優(yōu)勢(shì)和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)等算法,嵌入式系統(tǒng)能夠高效地處理大量數(shù)據(jù),從而實(shí)現(xiàn)
    發(fā)表于 11-14 16:39

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí),或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請(qǐng)繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    risc-v在人工智能圖像處理應(yīng)用前景分析

    長時(shí)間運(yùn)行或電池供電的設(shè)備尤為重要。 高性能 : 盡管RISC-V架構(gòu)以低功耗著稱,但其高性能也不容忽視。通過優(yōu)化指令集和處理器設(shè)計(jì),RISC-V可以在處理復(fù)雜的人工智能圖像處理任務(wù)時(shí)表現(xiàn)出色。 三
    發(fā)表于 09-28 11:00

    如何選擇神經(jīng)網(wǎng)絡(luò)種類

    人工智能和機(jī)器學(xué)習(xí)領(lǐng)域,選擇適合的神經(jīng)網(wǎng)絡(luò)種類是構(gòu)建高效、準(zhǔn)確模型的關(guān)鍵步驟。這一過程涉及對(duì)任務(wù)類型、數(shù)據(jù)特性、計(jì)算資源及模型性能要求等多方面的綜合考慮。
    的頭像 發(fā)表于 07-24 11:29 ?1200次閱讀

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡(luò)模型
    的頭像 發(fā)表于 07-24 10:42 ?1209次閱讀