一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用于解釋神經(jīng)網(wǎng)絡(luò)的方法是如何發(fā)展的?

中科院長春光機所 ? 來源:新智元 ? 作者:新智元 ? 2020-12-23 10:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

過去11年中用于解釋神經(jīng)網(wǎng)絡(luò)的最新方法是如何發(fā)展的呢?

本文在 Inception 網(wǎng)絡(luò)圖像分類器上嘗試使用引導(dǎo)反向傳播進行解釋演示。

為什么「解釋」很重要?

使用機器學習(ML)算法(尤其是現(xiàn)代深度學習)進行圖像識別的最大挑戰(zhàn)之一,是難以理解為什么一個特定的輸入圖像會產(chǎn)生它所預(yù)測的結(jié)果。

ML模型的用戶通常想了解圖像的哪些部分是預(yù)測中的重要因素。這些說明或“解釋”之所以有價值,有很多原因:

機器學習開發(fā)人員可以分析調(diào)試模型的解釋,識別偏差,并預(yù)測模型是否可能推廣到新的圖像

如果提供了為何做出特定預(yù)測的解釋,則機器學習模型的用戶可能會更信任模型

像 GDPR 這樣圍繞機器學習的規(guī)則要求一些算法決策能夠用人類的術(shù)語來解釋

因此,至少從2009年開始,研究人員就開發(fā)了許多不同的方法來打開深度學習的“黑匣子”,從而使基礎(chǔ)模型更容易解釋。

下面,我們?yōu)檫^去十年中最先進的圖像解釋技術(shù)整合了視覺界面,并對每種技術(shù)進行了簡要描述。

我們使用了許多很棒的庫,但是特別依賴 Gradio 來創(chuàng)建你在下面的 gif 文件和 PAIR-code 的 TensorFlow 實現(xiàn)中看到的接口。

用于所有接口的模型是Inception Net圖像分類器,可以在此jupyter筆記本和Colab上找到復(fù)制此博客文章的完整代碼。

在我們深入研究論文之前,讓我們先從一個非?;镜乃惴ㄩ_始。

七種不同的解釋方法

Leave-one-out (LOO)

Leave-one-out (LOO)是最容易理解的方法之一。如果你想了解圖像的哪個部分負責預(yù)測,這可能會是你想到的第一個算法。

其思想是首先將輸入圖像分割成一組較小的區(qū)域,然后,運行多個預(yù)測,每次都屏蔽一個區(qū)域。根據(jù)每個區(qū)域的「被屏蔽」對輸出的影響程度,為每個區(qū)域分配一個重要性分數(shù)。這些分數(shù)是對哪個區(qū)域最負責預(yù)測的量化。

這種方法很慢,因為它依賴于運行模型的許多迭代,但是它可以生成非常準確和有用的結(jié)果。上面是杜賓狗的圖片示例。

LOO是Gradio庫中的默認解釋技術(shù),完全不需要訪問模型的內(nèi)部——這是一個很大的優(yōu)點。

Vanilla Gradient Ascent [2009 and 2013]

Paper: Visualizing Higher-Layer Features of a Deep Network [2009]

Paper: Visualizing Image Classification Models and Saliency Maps [2013]

這兩篇論文的相似之處在于,它們都通過使用梯度上升來探索神經(jīng)網(wǎng)絡(luò)的內(nèi)部。換句話說,它們認為對輸入或激活的微小更改將增加預(yù)測類別的可能性。

第一篇論文將其應(yīng)用于激活,作者報告說,「有可能找到對高級特征的良好定性解釋, 我們證明,也許是違反直覺的,但這種解釋在單位水平上是可能的,它很容易實現(xiàn),并且各種技術(shù)的結(jié)果是一致的?!?/p>

第二種方法也采用梯度上升,但是直接對輸入圖像的像素點進行探測,而不是激活。

作者的方法「計算特定于給定圖像和類的類顯著性圖,這樣的地圖可以使用分類ConvNets用于弱監(jiān)督的對象分割?!?/p>

Guided Back-Propogation [2014]

Paper: Striving for Simplicity: The All Convolutional Net [2014]

本文提出了一種新的完全由卷積層構(gòu)成的神經(jīng)網(wǎng)絡(luò)。由于以前的解釋方法不適用于他們的網(wǎng)絡(luò),因此他們引入了引導(dǎo)式反向傳播。

該反向傳播可在進行標準梯度上升時過濾掉傳播時產(chǎn)生的負激活。作者稱,他們的方法「可以應(yīng)用于更廣泛的網(wǎng)絡(luò)結(jié)構(gòu)。」

接下來是梯度加權(quán)類激活映射(gradient-weighted class activation mapping,Grad-CAM) 。它利用「任何目標概念的梯度,流入最后的卷積層,生成一個粗糙的定位映射,突出圖像中的重要區(qū)域,以預(yù)測概念。」

該方法的主要優(yōu)點是進一步推廣了可以解釋的神經(jīng)網(wǎng)絡(luò)類(如分類網(wǎng)絡(luò)、字幕和可視化問答(VQA)模型) ,以及一個很好的后處理步驟,圍繞圖像中的關(guān)鍵對象對解釋進行集中和定位。

像前面的論文一樣,此方法從計算類評分函數(shù)相對于輸入圖像的梯度開始。

但是,SmoothGrad通過在輸入圖像中添加噪聲,然后針對圖像的這些擾動版本中的每一個來計算梯度,從而在視覺上銳化這些基于梯度的靈敏度圖。將靈敏度圖平均在一起可以得到更清晰的結(jié)果。

Integrated Gradients [2017]

Paper: Axiomatic Attribution for Deep Networks [2017]

不同于以往的論文,本文的作者從解釋的理論基礎(chǔ)入手。它們「確定了歸因方法應(yīng)該滿足的兩個基本公理——敏感性和實現(xiàn)不變性」。

他們用這些原理來指導(dǎo)設(shè)計一種新的歸屬方法(稱為綜合梯度),該方法可以產(chǎn)生高質(zhì)量的解釋,同時仍然只需要訪問模型的梯度; 但是它添加了一個「基線」超參數(shù),這可能影響結(jié)果的質(zhì)量。

Blur Integrated Gradients [2020]

Paper: Attribution in Scale and Space [2020]

論文研究了一個最新技術(shù)---- 這種方法被提出來用于解決具體的問題,包括消除「基線」參數(shù),移除某些在解釋中傾向于出現(xiàn)的視覺偽影。

此外,它還「在尺度/頻率維度上產(chǎn)生分數(shù)」,本質(zhì)上提供了圖像中重要物體的尺度感。

下面這張圖比較了所有這些方法:

原文標題:圖像識別的可視化解釋史

文章出處:【微信公眾號:中科院長春光機所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:圖像識別的可視化解釋史

文章出處:【微信號:cas-ciomp,微信公眾號:中科院長春光機所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結(jié)果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究

    眾多方法中,由于其結(jié)構(gòu)簡單,穩(wěn)定性好廣泛受到人們的重視,且已被用于產(chǎn)品開發(fā)。但是MRAS仍存在在低速區(qū)速度估計精度下降和對電動機參數(shù)變化非常敏感的問題。本文利用神經(jīng)網(wǎng)絡(luò)的特點,使估計更為簡單、快速
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?661次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的實現(xiàn)步驟詳解

    BP神經(jīng)網(wǎng)絡(luò)的實現(xiàn)步驟主要包括以下幾個階段:網(wǎng)絡(luò)初始化、前向傳播、誤差計算、反向傳播和權(quán)重更新。以下是對這些步驟的詳細解釋: 一、網(wǎng)絡(luò)初始化 確定網(wǎng)
    的頭像 發(fā)表于 02-12 15:50 ?644次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反
    的頭像 發(fā)表于 02-12 15:18 ?765次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學習的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學習的
    的頭像 發(fā)表于 02-12 15:15 ?851次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1183次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學習技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?668次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1865次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語言處理(NLP)領(lǐng)域的一項重要任務(wù),旨在識別和提取文本中的主觀信息,如情感傾向、情感強度等。隨著深度學習技術(shù)的發(fā)展,基于LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)的情感分析方法因其出色的序列建模
    的頭像 發(fā)表于 11-13 10:15 ?1273次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓練數(shù)據(jù)準備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)的訓練數(shù)據(jù)準備方法是一個關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)訓練數(shù)據(jù)準備的建議和
    的頭像 發(fā)表于 11-13 10:08 ?2102次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:05 ?1628次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14