一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI人工智能:3大浪潮+3大技術(shù)+3大應(yīng)用解析

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-25 19:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

所謂人工智能(Artificial Intelligence;縮寫:AI),是指以人工方式來實(shí)現(xiàn)人類所具有之智慧的技術(shù)。只不過,目前能實(shí)現(xiàn)與人類智能同等的技術(shù)還不存在,世界上絕大多數(shù)的人工智能還是只能解決某個(gè)特定問題。本篇文章是在我閱讀了幾本AI的相關(guān)書籍后,所概略統(tǒng)整出的架構(gòu),希望讓初次接觸AI的讀者,能透過333口訣,快速理解AI到底是什么。

一、AI的三次浪潮

第一次AI浪潮

第一次AI浪潮起于1950~1960年,止于1980年代。由于出現(xiàn)在網(wǎng)絡(luò)之前,因此又被稱為“古典人工智能”。這時(shí)期出現(xiàn)的“符號(hào)主義”與“聯(lián)結(jié)主義”,分別是日后“專家系統(tǒng)”與“深度學(xué)習(xí)”的雛形。只不過,雖然當(dāng)時(shí)的成果已能解開拼圖或簡(jiǎn)單的游戲,卻幾乎無法解決實(shí)用的問題。

第二次AI浪潮

第二次AI熱潮伴隨著計(jì)算機(jī)的普及,出現(xiàn)在1980年代。這時(shí)期所進(jìn)行的研究,是以灌輸「專家知識(shí)」作為規(guī)則,來協(xié)助解決特定問題的“專家系統(tǒng)”(Expert system)為主。然而,縱使當(dāng)時(shí)有商業(yè)應(yīng)用的實(shí)例,應(yīng)用范疇卻很有限,熱潮也因此逐漸消退。

第三次AI浪潮

第三次AI浪潮則出現(xiàn)于2010年代,伴隨著高性能計(jì)算機(jī)、因特網(wǎng)、大數(shù)據(jù)、傳感器的普及,以及計(jì)算成本的下降,“機(jī)器學(xué)習(xí)”隨之興起。所謂機(jī)器學(xué)習(xí)(Machine leaning),是指讓計(jì)算機(jī)大量學(xué)習(xí)數(shù)據(jù),使它可以像人類一樣辨識(shí)聲音及影像,或是針對(duì)問題做出合適的判斷。

二、AI的三大技術(shù)

快速了解了AI的發(fā)展史后,我們來看看當(dāng)代人工智能的三大代表性模型:遺傳算法、專家系統(tǒng)、類神經(jīng)網(wǎng)絡(luò)。

1、遺傳算法

遺傳算法(Genetic algorithm;GA),又稱為演化式算法(Evolutionary algorithm),是受達(dá)爾文演化論所啟發(fā)的人工智能。它透過「適者生存」的規(guī)則,將“優(yōu)秀的個(gè)體”想象成“好的答案”,透過演化的方式來找出最佳解。

2、專家系統(tǒng)

專家系統(tǒng)(Expert system),則是針對(duì)預(yù)設(shè)的問題,事先準(zhǔn)備好大量的對(duì)應(yīng)方式。它應(yīng)用在很多地方,尤其是疾病診斷。只不過,專家系統(tǒng)只能針對(duì)專家預(yù)先考慮過的狀況來準(zhǔn)備對(duì)策,它并沒有自行學(xué)習(xí)的能力,因此還是有其局限性。

3、類神經(jīng)網(wǎng)絡(luò)

從第三次AI浪潮所興起的機(jī)器學(xué)習(xí)(Machine learning)有許多種手法,其中最受矚目的,莫過于深度學(xué)習(xí)(Deep learning)了。所謂深度學(xué)習(xí),是透過模仿人腦的“類神經(jīng)網(wǎng)絡(luò)”(Neural network)來學(xué)習(xí)大量數(shù)據(jù)的手法。

類神經(jīng)網(wǎng)絡(luò)的由來

若你去觀察腦的內(nèi)部,會(huì)發(fā)現(xiàn)有大量稱為“神經(jīng)元”的神經(jīng)細(xì)胞彼此相連。一個(gè)神經(jīng)元從其他神經(jīng)元那里接收的電氣信號(hào)量達(dá)某一定值以上,就會(huì)興奮(神經(jīng)沖動(dòng));在某一定值以下,就不會(huì)興奮。

興奮起來的神經(jīng)元,會(huì)將電器信號(hào)傳送給下一個(gè)相連的神經(jīng)元。下一個(gè)神經(jīng)元同樣會(huì)因此興奮或不興奮。簡(jiǎn)單來說,彼此相連的神經(jīng)元,會(huì)形成聯(lián)合傳遞行為。我們透過將這種相連的結(jié)構(gòu)來數(shù)學(xué)模型化,便形成了類神經(jīng)網(wǎng)絡(luò)。

類神經(jīng)網(wǎng)絡(luò):深度學(xué)習(xí)

我們可以發(fā)現(xiàn),經(jīng)模型化的的類神經(jīng)網(wǎng)絡(luò),是由“輸入層”(Input layer)、“隱藏層”(Hidden layer)及“輸出層”(Output layer)等三層所構(gòu)成。另外,學(xué)習(xí)數(shù)據(jù)則是由輸入數(shù)據(jù)以及相對(duì)應(yīng)的正確解答來組成。

以影像辨識(shí)為例,為了讓AI學(xué)習(xí)類神經(jīng)網(wǎng)絡(luò)的模型,首先必須先將影像學(xué)習(xí)數(shù)據(jù)分割成像素?cái)?shù)據(jù),然后將各像素值輸進(jìn)輸入層。

接受了數(shù)據(jù)的輸入層,將像素值乘上“權(quán)重”后,便傳送給后方隱藏層的神經(jīng)元。隱藏層的各個(gè)神經(jīng)元會(huì)累加前一層所接收到的值,并將其結(jié)果再乘上“權(quán)重”后,傳送給后方的神經(jīng)元。最后,經(jīng)由輸出層的神經(jīng)元的輸出,便可得到影像辨識(shí)的預(yù)測(cè)結(jié)果。

為了讓輸出層的值跟各個(gè)輸入數(shù)據(jù)所對(duì)應(yīng)的正解數(shù)據(jù)相等,會(huì)對(duì)各個(gè)神經(jīng)元的輸入計(jì)算出適當(dāng)?shù)摹皺?quán)重”值。

這個(gè)權(quán)重的計(jì)算,一般是使用“誤差倒傳遞算法”(Error Back Propagation),使用與正解數(shù)據(jù)之間的誤差,從輸出層逆推回去。透過各「權(quán)重」的調(diào)整,來縮小輸出層的值與正解數(shù)據(jù)的值之間的誤差,以建立出完成學(xué)習(xí)的模型。

由于過去類神經(jīng)網(wǎng)絡(luò)之間進(jìn)行傳遞的權(quán)重值難以優(yōu)化,因此曾有多數(shù)研究者對(duì)類神經(jīng)網(wǎng)絡(luò)的研究持否定態(tài)度。直到2006年,辛頓(Geoffrey Hinton)開發(fā)出自動(dòng)編碼器(Autoencoder)的手法,才突破了這項(xiàng)瓶頸。

自動(dòng)編碼器是指,在類神經(jīng)網(wǎng)絡(luò)的輸入層和輸出層使用相同數(shù)據(jù),并將隱藏層設(shè)置于二者之間,藉此用來調(diào)整類神經(jīng)網(wǎng)絡(luò)之間的權(quán)重參數(shù)的一種手法。利用以自動(dòng)編碼器所獲得的類神經(jīng)網(wǎng)絡(luò)權(quán)重參數(shù)值進(jìn)行初始化后,便能應(yīng)用「誤差倒傳遞算法」,提高多層類神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)準(zhǔn)確度。

透過類神經(jīng)網(wǎng)絡(luò),深度學(xué)習(xí)便成為了“只要將數(shù)據(jù)輸入類神經(jīng)網(wǎng)絡(luò),它就能自行抽出特征”的人工智能,而這又稱為“特征學(xué)習(xí)”(feature learning)。

深度學(xué)習(xí)最擅長(zhǎng)的,是它能辨識(shí)圖像數(shù)據(jù)或波形數(shù)據(jù)這類無法符號(hào)化的數(shù)據(jù)。自2010年代以來,如Google、Microsoft及Facebook等美國知名IT企業(yè),都開始著手深度學(xué)習(xí)的研究。例如,蘋果「Siri」的語音識(shí)別,Microsoft搜索引擎「Bing」所具備的影像搜尋等等,而Google的深度學(xué)習(xí)項(xiàng)目也已超過1,500項(xiàng)。

至于深度學(xué)習(xí)如此飛躍的成長(zhǎng),要?dú)w功于硬設(shè)備的提升。圖形處理器GPU)大廠輝達(dá)(NVIDIA)利用該公司的圖形適配器來提升深度學(xué)習(xí)的性能,提供鏈接庫(Library)和框架(framework)產(chǎn)品,并積極開設(shè)研討課程。另外,Google也公開了框架「TensorFlow」,可以將深度學(xué)習(xí)應(yīng)用于數(shù)據(jù)分析。

三、AI的三大應(yīng)用

AI應(yīng)用領(lǐng)域主要可分為語音識(shí)別、影像辨識(shí)以及自然語言處理等三部分。

1、語音識(shí)別

語音識(shí)別部分,透過多年來語音識(shí)別競(jìng)賽CHiME的研究,已經(jīng)有了等同人類的辨識(shí)度(CHiME,是針對(duì)實(shí)際生活環(huán)境下的語音識(shí)別,所進(jìn)行評(píng)測(cè)的國際語音識(shí)別競(jìng)賽)。此外,Apple、Google、Amazon也相繼提出可應(yīng)用于日常生活的服務(wù),因此其成熟度已達(dá)到實(shí)用等級(jí)。

2、影像辨識(shí)

影像辨識(shí)部分,雖然一般圖片的辨識(shí)已有同等于人類的辨識(shí)率,但動(dòng)態(tài)影像的辨識(shí)準(zhǔn)確度卻仍比不上人類,目前還在進(jìn)行各種算法的測(cè)試。其中,影像辨識(shí)目前最火熱的應(yīng)用場(chǎng)域非自動(dòng)駕駛莫屬了。

整個(gè)汽車、信息通訊產(chǎn)業(yè)都正朝著自駕車的方向努力,例如Google持續(xù)進(jìn)行自動(dòng)駕駛的研究,TOYOTA也在美國設(shè)立豐田研究所,可以知道現(xiàn)階段的開發(fā)已十分接近實(shí)用化。因此,我們可判斷目前影像辨識(shí)的成熟度是介在研究和實(shí)用等級(jí)之間。

3、自然語言處理

自然語言處理(Natural language processing;NLP),是試著讓人工智能能理解人類所寫的文字和所說的話語。NLP首先會(huì)分解詞性,稱之“語素分析”(morphemic analysis),在分解出最小的字義單位后,接著會(huì)進(jìn)行“語法分析”(syntactic analysis),最后再透過“語意分析”(semantic analysis)來了解含意。

輸出部分,自然語言處理也與生成文法(generative grammar)密切相關(guān)。生成文法理論認(rèn)為,只要遵循規(guī)則即可生成文句。這也代表著,只要把規(guī)則組合在一起,便可能生成文章。

在自然語言處理中,最具代表性的應(yīng)用就是“聊天機(jī)器人”(Chatbot)了,它是一種如真人般,可透過文字訊息與人對(duì)話的程序。2016年,臉書推出了“Facebook Messenger Platform”,而Line也推出了“Messaging API”,因而促使這種搭載NLP技術(shù)的聊天機(jī)器人成為矚目的焦點(diǎn)。

另外,由IBM所開發(fā)的華生(IBM Watson),也是應(yīng)用NLP的人工智能而成。華生可以從維基百科等語料庫中抽取知識(shí),學(xué)習(xí)詞匯與詞匯之間的相關(guān)性?,F(xiàn)在,就連軟件銀行(SoftBank)機(jī)器人Pepper也是搭載華生系統(tǒng)。

只不過,由于在日常對(duì)話中,我們很常省略詞句,也不一定會(huì)提及時(shí)空背景,因此當(dāng)前的Chatbot尚無法與人類進(jìn)行天花亂墜的對(duì)話。所以說,現(xiàn)行多數(shù)的Chatbot廠商,還是會(huì)限定對(duì)話的環(huán)境與應(yīng)用領(lǐng)域。

審核編輯:符乾江
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 語音識(shí)別
    +關(guān)注

    關(guān)注

    39

    文章

    1782

    瀏覽量

    114249
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249589
  • 通信網(wǎng)絡(luò)
    +關(guān)注

    關(guān)注

    22

    文章

    2077

    瀏覽量

    53018
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134635
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國產(chǎn)工業(yè)AI人工智能

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    開售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴(kuò)展/重力感應(yīng)/RS232/RS485/IO 擴(kuò)展/I2C 擴(kuò)展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個(gè)全新八核擁有超強(qiáng)性能的人工智能
    發(fā)表于 04-23 10:55

    星漢大模型2.0:AI大模型浪潮奔涌 大華股份呈交“智能答卷”

    市場(chǎng)規(guī)模將突破7000億元大關(guān),而行業(yè)大模型將繼續(xù)成為該年度人工智能發(fā)展的前沿?zé)狳c(diǎn)。在這場(chǎng)技術(shù)浪潮中,以視頻為核心的智慧物聯(lián)領(lǐng)域正成為AI技術(shù)
    的頭像 發(fā)表于 04-03 16:32 ?568次閱讀
    星漢大模型2.0:<b class='flag-5'>AI</b>大模型<b class='flag-5'>浪潮</b>奔涌 大華股份呈交“<b class='flag-5'>智能</b>答卷”

    蘋果計(jì)劃3月推出AI智能居家設(shè)備

    近日,有消息稱蘋果公司最快將于3月份推出一款基于人工智能AI)的智能居家設(shè)備。這款設(shè)備將集FaceTime視頻通話、Siri語音助手以及蘋果智能
    的頭像 發(fā)表于 11-15 18:14 ?1046次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    了重要作用。在未來,隨著嵌入式系統(tǒng)和人工智能技術(shù)的不斷進(jìn)步,我們可以預(yù)見更多創(chuàng)新應(yīng)用的出現(xiàn),為社會(huì)發(fā)展和生活品質(zhì)的提升帶來更多可能性。
    發(fā)表于 11-14 16:39

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    不僅提高了能源的生產(chǎn)效率和管理水平,還為未來的可持續(xù)發(fā)展提供了有力保障。隨著技術(shù)的不斷進(jìn)步和應(yīng)用場(chǎng)景的不斷拓展,人工智能將在能源科學(xué)領(lǐng)域發(fā)揮更加重要的作用。 總結(jié) 《AI for Science:
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運(yùn)社區(qū)給我一個(gè)閱讀此書的機(jī)會(huì),感謝平臺(tái)。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,還促進(jìn)了新理論、新技術(shù)的誕生。 3. 挑戰(zhàn)與機(jī)遇并存 盡管人工智能為科學(xué)創(chuàng)新帶來了巨大潛力,但第一章也誠實(shí)地討論了伴隨而來的挑戰(zhàn)。數(shù)據(jù)隱私、算法偏見、倫理道德等問題不容忽視。如何在利用AI
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    、RISC-V在人工智能圖像處理中的應(yīng)用案例 目前,已有多個(gè)案例展示了RISC-V在人工智能圖像處理中的應(yīng)用潛力。例如: Esperanto技術(shù)公司 :該公司制造的首款高性能RISC-V AI
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請(qǐng)

    目前人工智能在繪畫對(duì)話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書對(duì)ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬
    發(fā)表于 09-09 15:36

    名單公布!【書籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學(xué)研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對(duì)AI for Science的技術(shù)支撐進(jìn)行解讀。
    發(fā)表于 09-09 13:54

    報(bào)名開啟!深圳(國際)通用人工智能大會(huì)將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會(huì)暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能
    發(fā)表于 08-22 15:00

    NEO推出3D X-AI芯片,AI性能飆升百倍

    近日,半導(dǎo)體行業(yè)的創(chuàng)新先鋒NEO Semiconductor震撼發(fā)布了一項(xiàng)革命性技術(shù)——3D X-AI芯片,這項(xiàng)技術(shù)旨在徹底顛覆人工智能處理
    的頭像 發(fā)表于 08-21 15:45 ?959次閱讀