一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模型集成是一種提升模型能力的常用方法

新機(jī)器視覺 ? 來源:AI公園 ? 作者:AI公園 ? 2021-01-27 11:31 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

模型集成是一種提升模型能力的常用方法,但通常也會(huì)帶來推理時(shí)間的增加,在物體檢測(cè)上效果如何,可以看看。

8c5baf2e-6042-11eb-8b86-12bb97331649.png

介紹

集成機(jī)器學(xué)習(xí)模型是一種常見的提升模型能力的方式,并已在多個(gè)場(chǎng)景中使用,因?yàn)樗鼈兘Y(jié)合了多個(gè)模型的決策,以提高整體性能,但當(dāng)涉及到基于DNN(深度神經(jīng)網(wǎng)絡(luò))的目標(biāo)檢測(cè)模型時(shí),它并不僅僅是合并結(jié)果那么簡單。

集成的需求

為了在任何模型中獲得良好的結(jié)果,都需要滿足某些標(biāo)準(zhǔn)(數(shù)據(jù)、超參數(shù))。但在真實(shí)場(chǎng)景中,你可能會(huì)得到糟糕的訓(xùn)練數(shù)據(jù),或者很難找到合適的超參數(shù)。在這些情況下,綜合多個(gè)性能較差的模型可以幫助你獲得所需的結(jié)果。在某種意義上,集成學(xué)習(xí)可以被認(rèn)為是一種通過執(zhí)行大量額外計(jì)算來彌補(bǔ)學(xué)習(xí)算法不足的方法。另一方面,另一種選擇是在一個(gè)非集成系統(tǒng)上做更多的學(xué)習(xí)。對(duì)于計(jì)算、存儲(chǔ)或通信資源的相同增加,集成系統(tǒng)使用兩種或兩種以上的方法可能會(huì)比使用單一方法增加資源的方法更有效地提高整體精度。

看起來挺好,有沒有缺點(diǎn)呢?

更難調(diào)試或理解預(yù)測(cè),因?yàn)轭A(yù)測(cè)框是根據(jù)多個(gè)模型繪制的。

推理時(shí)間根據(jù)模型和使用的模型數(shù)量而增加。

嘗試不同的模型以獲得合適的模型集合是一件耗時(shí)的事情。

不同的模型集成

OR方法:如果一個(gè)框是由至少一個(gè)模型生成的,就會(huì)考慮它。

AND方法:如果所有模型產(chǎn)生相同的框,則認(rèn)為是一個(gè)框(如果IOU >0.5)。

一致性方法:如果大多數(shù)模型產(chǎn)生相同的框,則認(rèn)為是一個(gè)框,即如果有m個(gè)模型,(m/2 +1)個(gè)模型產(chǎn)生相同的框,則認(rèn)為這個(gè)框有效。

加權(quán)融合:這是一種替代NMS的新方法,并指出了其不足之處。

8f114b52-6042-11eb-8b86-12bb97331649.png

不同的集成方法

在上面的例子中,OR方法的預(yù)測(cè)得到了所有需要的對(duì)象框,但也得到了一個(gè)假陽性結(jié)果,一致性的方法漏掉了馬,AND方法同時(shí)漏掉了馬和狗。

驗(yàn)證

為了計(jì)算不同的集成方法,我們將跟蹤以下參數(shù):

True positive:預(yù)測(cè)框與gt匹配

False Positives:預(yù)測(cè)框是錯(cuò)誤的

False Negatives:沒有預(yù)測(cè),但是存在gt。

Precision:度量你的預(yù)測(cè)有多準(zhǔn)確。也就是說,你的預(yù)測(cè)正確的百分比[TP/ (TP + FP)]

Recall:度量gt被預(yù)測(cè)的百分比[TP/ (TP + FN)]

Average Precision:precision-recall圖的曲線下面積

使用的模型

為了理解集成是如何起作用的,我們提供了用于實(shí)驗(yàn)的獨(dú)立模型的結(jié)果。

1. YoloV3:

903377bc-6042-11eb-8b86-12bb97331649.png

2. Faster R-CNN — ResNeXt 101 [X101-FPN]:

90fec3a4-6042-11eb-8b86-12bb97331649.png

集成實(shí)驗(yàn)

1. OR — [YoloV3, X101-FPN]

91b45714-6042-11eb-8b86-12bb97331649.png

如果你仔細(xì)觀察,F(xiàn)Ps的數(shù)量增加了,這反過來降低了精度。與此同時(shí),TPs數(shù)量的增加反過來又增加了召回。這是使用OR方法時(shí)可以觀察到的一般趨勢(shì)。

2. AND — [YoloV3, X101-FPN]

91f8a054-6042-11eb-8b86-12bb97331649.png

與我們使用OR方法觀察到的情況相反,在AND方法中,我們最終獲得了較高的精度和較低的召回率,因?yàn)閹缀跛械募訇栃远急粍h除了,因?yàn)閅oloV3和X101的大多數(shù)FPs是不同的。

檢測(cè)框加權(quán)融合

在NMS方法中,如果框的IoU大于某個(gè)閾值,則認(rèn)為框?qū)儆趩蝹€(gè)物體。因此,框的過濾過程取決于這個(gè)單一IoU閾值的選擇,這影響了模型的性能。然而,設(shè)置這個(gè)閾值很棘手:如果有多個(gè)物體并排存在,那么其中一個(gè)就會(huì)被刪除。NMS丟棄了冗余框,因此不能有效地從不同的模型中產(chǎn)生平均的局部預(yù)測(cè)。

9281237a-6042-11eb-8b86-12bb97331649.png

NMS和WBF之間的主要區(qū)別是,WBF利用所有的框,而不是丟棄它們。在上面的例子中,紅框是ground truth,藍(lán)框是多個(gè)模型做出的預(yù)測(cè)。請(qǐng)注意,NMS是如何刪除冗余框的,但WBF通過考慮所有預(yù)測(cè)框創(chuàng)建了一個(gè)全新的框(融合框)。

3. Weighted Boxes Fusion — [Yolov3, X101-FPN]

92b348f0-6042-11eb-8b86-12bb97331649.png

YoloV3和X101-FPN的權(quán)重比分別為2:1。我們也試著增加有利于X101-FPN的比重(因?yàn)樗男阅芨?,但在性能上沒有看到任何顯著的差異。從我們讀過的加權(quán)融合論文中,作者注意到了AP的增加,但如你所見,WBF YoloV3和X101-FPN并不比OR方法好很多。我們注意到的是,大部分的實(shí)驗(yàn)涉及至少3個(gè)或更多模型。

4. Weighted Boxes Fusion — [Yolov3, X101, R101, R50]

93703e10-6042-11eb-8b86-12bb97331649.png

在最后的實(shí)驗(yàn)中,我們使用了YoloV3以及我們?cè)贒etectron2中訓(xùn)練的3個(gè)模型[ResNeXt101-FPN, ResNet101-FPN, ResNet50-FPN]。顯然,召回率有一個(gè)跳躍(約為傳統(tǒng)方法的0.3),但AP的跳躍并不大。另外,需要注意的是,當(dāng)你向WF方法添加更多模型時(shí),誤報(bào)的數(shù)量會(huì)激增。

總結(jié)

當(dāng)使用相互補(bǔ)充的模型時(shí),集成是提高性能的一種很好的方法,但它也會(huì)以速度為代價(jià)來完成推理。根據(jù)需求,可以決定有多少個(gè)模型,采用哪種方法,等等。但從我們進(jìn)行的實(shí)驗(yàn)來看,性能提升的數(shù)量似乎與一起運(yùn)行這些模型所需的資源和推斷時(shí)間不成比例。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:目標(biāo)檢測(cè)多模型集成方法總結(jié)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    模型推理顯存和計(jì)算量估計(jì)方法研究

    (如全連接層、卷積層等)確定所需的顯存大??; (3)將各層顯存大小相加,得到模型總的顯存需求。 基于神經(jīng)網(wǎng)絡(luò)剪枝的顯存估計(jì) 神經(jīng)網(wǎng)絡(luò)剪枝是一種減少模型參數(shù)數(shù)量的技術(shù),可以降低顯存需求。通過剪枝,可以
    發(fā)表于 07-03 19:43

    FA模型訪問Stage模型DataShareExtensionAbility說明

    解決方案,讓開發(fā)者平滑過渡到API 9(含)之后的版本。 基本原理 一種兼容方法是DataAbilityHelper根據(jù)傳入的URI的前綴是DataAbility還是DataShare來決定是否調(diào)
    發(fā)表于 06-04 07:53

    KaihongOS操作系統(tǒng)FA模型與Stage模型介紹

    FA模型與Stage模型介紹 KaihongOS操作系統(tǒng)中,F(xiàn)A模型(Feature Ability)和Stage模型是兩不同的應(yīng)用
    發(fā)表于 04-24 07:27

    一種基于正交與縮放變換的大模型量化方法

    近年來,大規(guī)模語言模型(Large Language Models, LLMs)在自然語言處理領(lǐng)域取得了革命性進(jìn)展。以 GPT 系列、LLaMA 等為代表的模型,通過千億級(jí)參數(shù)的復(fù)雜結(jié)構(gòu)展現(xiàn)出強(qiáng)大的語義理解和生成能力。
    的頭像 發(fā)表于 03-04 11:10 ?476次閱讀
    <b class='flag-5'>一種</b>基于正交與縮放變換的大<b class='flag-5'>模型</b>量化<b class='flag-5'>方法</b>

    模型領(lǐng)域常用名詞解釋(近100個(gè))

    的分類進(jìn)行了整理,以下供參考:模型架構(gòu)與基礎(chǔ)概念大語言模型(LLM,LargeLanguageModel):一種基于深度學(xué)習(xí)的大規(guī)模神經(jīng)網(wǎng)絡(luò)模型,通常采用Transf
    的頭像 發(fā)表于 02-19 11:49 ?779次閱讀
    大<b class='flag-5'>模型</b>領(lǐng)域<b class='flag-5'>常用</b>名詞解釋(近100個(gè))

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗(yàn)】+Embedding技術(shù)解讀

    理和理解這些數(shù)據(jù)。在自然語言處理中,Embedding常用于將文本數(shù)據(jù)中的單詞、句子或文檔映射為固定長度的實(shí)數(shù)向量,這些向量包含了豐富的語義信息。RAG技術(shù)是一種結(jié)合信息檢索與文本生成能力的技術(shù),它通過
    發(fā)表于 01-17 19:53

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗(yàn)】+大模型微調(diào)技術(shù)解讀

    ,減少了計(jì)算成本。LoRA(Low-Rank Adaptation):一種基于低秩分解的微調(diào)方法,通過分解模型參數(shù)矩陣為低秩矩陣來減少參數(shù)更新的數(shù)量,提高訓(xùn)練效率。PET(Prompt-based
    發(fā)表于 01-14 16:51

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人大模型

    、醫(yī)療、服務(wù)等領(lǐng)域的應(yīng)用前景更加廣闊,也使得人類能夠更輕松地借助機(jī)器完成復(fù)雜工作。我深刻認(rèn)識(shí)到,大模型技術(shù)正在從根本上改變我們對(duì)機(jī)器人能力的認(rèn)知。它們不僅是一種技術(shù)工具,更是推動(dòng)具身智能機(jī)器人發(fā)展的重要?jiǎng)恿Α?
    發(fā)表于 12-29 23:04

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測(cè)模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級(jí)目標(biāo)檢測(cè)模型,具有非常高的檢測(cè)精度,可以在低算力設(shè)備進(jìn)行實(shí)時(shí)的端到端推理檢測(cè)。 2.1 Picodet模型介紹
    發(fā)表于 12-19 14:33

    【「大模型啟示錄」閱讀體驗(yàn)】如何在客服領(lǐng)域應(yīng)用大模型

    多個(gè)因素以確保所選模型能夠滿足企業(yè)的具體需求和目標(biāo)。首先,企業(yè)需要明確自己的客服需求和目標(biāo)。例如,是否需要24小時(shí)在線客服服務(wù)?是否需要處理復(fù)雜問題的能力?是否需要個(gè)性化服務(wù)?明確這些需求有助于企業(yè)更好
    發(fā)表于 12-17 16:53

    卡諾模型為人工智能領(lǐng)域提供了一種全新的視角

    在探索人工智能如何更深層次滿足用戶需求、提升用戶體驗(yàn)的旅程中,卡諾模型(Kano Model)提供了個(gè)極具價(jià)值的理論框架。這模型不僅為產(chǎn)
    的頭像 發(fā)表于 12-11 10:17 ?640次閱讀

    如何提升ASR模型的準(zhǔn)確性

    提升ASR(Automatic Speech Recognition,自動(dòng)語音識(shí)別)模型的準(zhǔn)確性是語音識(shí)別技術(shù)領(lǐng)域的核心挑戰(zhàn)之。以下是提升
    的頭像 發(fā)表于 11-18 15:14 ?2324次閱讀

    接口芯片的編程模型方法是什么

    接口芯片的編程模型方法個(gè)復(fù)雜的話題,涉及到硬件設(shè)計(jì)、軟件編程、通信協(xié)議等多個(gè)方面。 1. 接口芯片概述 接口芯片是用來連接不同硬件設(shè)備或系統(tǒng)的一種
    的頭像 發(fā)表于 09-30 11:30 ?648次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    習(xí)語言的表達(dá)方式和生成能力。通過預(yù)測(cè)文本中缺失的部分或下個(gè)詞,模型逐漸掌握語言的規(guī)律和特征。 常用模型結(jié)構(gòu) Transformer架構(gòu)
    發(fā)表于 08-02 11:03

    深度學(xué)習(xí)模型量化方法

    深度學(xué)習(xí)模型量化是一種重要的模型輕量化技術(shù),旨在通過減少網(wǎng)絡(luò)參數(shù)的比特寬度來減小模型大小和加速推理過程,同時(shí)盡量保持模型性能。從而達(dá)到把
    的頭像 發(fā)表于 07-15 11:01 ?1104次閱讀
    深度學(xué)習(xí)<b class='flag-5'>模型</b>量化<b class='flag-5'>方法</b>