一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

4篇建議收藏的圖神經(jīng)網(wǎng)絡(luò)綜述論文

深度學(xué)習(xí)自然語言處理 ? 來源:圖與推薦 ? 作者:圖與推薦 ? 2021-03-08 10:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文主要介紹了2021年最新的圖神經(jīng)網(wǎng)絡(luò)綜述,是入坑的最佳材料。

圖神經(jīng)網(wǎng)絡(luò)已經(jīng)成為深度學(xué)習(xí)領(lǐng)域最炙手可熱的方向之一了,也是各大互聯(lián)網(wǎng)公司非常歡迎的方向。

本文來自圖挖掘大牛Philip S. Yu老師和在異質(zhì)圖領(lǐng)域深耕的北郵Chuan Shi教授。一作Xiao Wang是圖挖掘的Rising Star。圖神經(jīng)網(wǎng)絡(luò)大部分的研究是針對簡單同質(zhì)圖設(shè)計(jì)的。然后,在工業(yè)實(shí)際場景下,數(shù)據(jù)往往更加復(fù)雜,是包含多種類型節(jié)點(diǎn)和邊的異質(zhì)圖。例如,電商推薦實(shí)際是預(yù)測用戶-商品之間的邊。因此,異質(zhì)圖神經(jīng)網(wǎng)絡(luò)更具有實(shí)際經(jīng)濟(jì)價(jià)值。

本文分類梳理了異質(zhì)圖神經(jīng)網(wǎng)絡(luò)及表示學(xué)習(xí)最新的進(jìn)展,包括模型,應(yīng)用及相關(guān)的資源(數(shù)據(jù)&代碼)。非常值得一看~

b411830c-7f2a-11eb-8b86-12bb97331649.jpg

b454f966-7f2a-11eb-8b86-12bb97331649.jpg

本文來自圖挖掘大牛Philip S. Yu老師和學(xué)術(shù)新秀 Shirui Pan,主要介紹了圖上自監(jiān)督學(xué)習(xí)的最新進(jìn)展。自監(jiān)督學(xué)習(xí)這1,2年非?;?,當(dāng)然也免不了蔓延到圖神經(jīng)網(wǎng)絡(luò)領(lǐng)域。例如,圖神經(jīng)網(wǎng)絡(luò)預(yù)訓(xùn)練模型基本都是采用自監(jiān)督訓(xùn)練的。

image-20210302115026004

image-20210302115128408

b520a458-7f2a-11eb-8b86-12bb97331649.jpg

圖神經(jīng)網(wǎng)絡(luò)與元學(xué)習(xí)結(jié)合的相關(guān)模型及應(yīng)用。圖神經(jīng)網(wǎng)絡(luò)經(jīng)過這幾年的發(fā)展,已經(jīng)逐漸進(jìn)入了深水區(qū)。一些研究者便將其與多種傳統(tǒng)技術(shù)如元學(xué)習(xí)結(jié)合,彎道超車,也發(fā)了一些頂會(huì)論文。

本文來自清華大學(xué)朱文武團(tuán)隊(duì)。與傳統(tǒng)深度學(xué)習(xí)算法類似,圖深度學(xué)習(xí)(包括圖表示學(xué)習(xí)和圖神經(jīng)網(wǎng)絡(luò))也不可避免的需要調(diào)整大量超參數(shù)。AutoML可以實(shí)現(xiàn)自動(dòng)超參數(shù)搜索,本文則是集中梳理了圖上的自動(dòng)機(jī)器學(xué)習(xí)技術(shù)。

b6ceea4e-7f2a-11eb-8b86-12bb97331649.jpg

原文標(biāo)題:【2021最新】4篇圖神經(jīng)網(wǎng)絡(luò)綜述論文,建議收藏!

文章出處:【微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:【2021最新】4篇圖神經(jīng)網(wǎng)絡(luò)綜述論文,建議收藏!

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)的調(diào)參技巧與建議

    BP神經(jīng)網(wǎng)絡(luò)的調(diào)參是一個(gè)復(fù)雜且關(guān)鍵的過程,涉及多個(gè)超參數(shù)的優(yōu)化和調(diào)整。以下是一些主要的調(diào)參技巧與建議: 一、學(xué)習(xí)率(Learning Rate) 重要性 :學(xué)習(xí)率是BP神經(jīng)網(wǎng)絡(luò)中最重要的超參數(shù)之一
    的頭像 發(fā)表于 02-12 16:38 ?805次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?659次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?909次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?764次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?850次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1181次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    經(jīng)典神經(jīng)網(wǎng)絡(luò)(GNNs)的基準(zhǔn)分析研究

    本文簡要介紹了經(jīng)典神經(jīng)網(wǎng)絡(luò)(GNNs)的基準(zhǔn)分析研究,發(fā)表在 NeurIPS 2024。 文章回顧了經(jīng)典 GNNs 模型在節(jié)點(diǎn)分類任務(wù)上的表現(xiàn),結(jié)果發(fā)現(xiàn)過去 SOTA 學(xué)習(xí)模型報(bào)告的性能優(yōu)越
    的頭像 發(fā)表于 11-27 09:16 ?783次閱讀
    經(jīng)典<b class='flag-5'>圖</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(GNNs)的基準(zhǔn)分析研究

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1863次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1124次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長期依賴問題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1628次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時(shí),如時(shí)間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時(shí)間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1570次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實(shí)時(shí)機(jī)器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?661次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    2.一個(gè)小型神經(jīng)網(wǎng)絡(luò) 3.用CIFAR-10數(shù)據(jù)集訓(xùn)練的CIFAR網(wǎng)絡(luò)模型 CIFAR-10是一個(gè)特定數(shù)據(jù)集,通常用于訓(xùn)練CIFAR
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14