一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

詳解基于深度學(xué)習(xí)的偽裝目標(biāo)檢測

中科院長春光機(jī)所 ? 來源:極市平臺 ? 作者:極市平臺 ? 2021-03-12 10:42 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

最后是O2OGM模塊,將Conv6-3提取的顯著性目標(biāo)特征信息與Conv2-2提取的邊緣特征結(jié)合后的特征分別與Conv3-3、Conv4-3、Conv5-3、Conv6-3每層提取的顯著性目標(biāo)特征進(jìn)行融合,即圖中FF模塊的操作。FF操作很簡單,就是將高層特征上采樣然后進(jìn)行拼接的操作,就可以達(dá)到融合的效果。

PFANet的結(jié)構(gòu)相對簡單,采用VGG網(wǎng)絡(luò)作為特征提取網(wǎng)絡(luò),然后將前兩層特征稱為低層特征,后三層特征稱為高層特征,對他們采用了不同的方式進(jìn)行特征增強(qiáng),以增強(qiáng)檢測效果。

首先是對于高層特征,先是采用了一個(gè)CPFE來增大感受野,然后再接一個(gè)通道注意力模塊,即完成了對高層特征的特征增強(qiáng)(這里的這個(gè)CPFE,其實(shí)就是ASPP)。

然后再對經(jīng)過了CPFE后的高層特征使用通道注意力(CA)。

92b43976-7e43-11eb-8b86-12bb97331649.png

以上即是高層特征的增強(qiáng)方法,而對于低層特征,處理得則更為簡單,只需要使用空間注意力模塊(SA),即可完成。

92ee9dfa-7e43-11eb-8b86-12bb97331649.jpg

整個(gè)PFANet的網(wǎng)絡(luò)結(jié)構(gòu)很清晰,如下圖所示。

介紹完EGNet和PFANet兩種方法以后,就剩下SINet了。SINet的思路來自于19年的一篇CVPR的文章《.Cascaded partial decoder for fast and accurate salient object detection》。這篇文章里提出了CPD的這樣一個(gè)結(jié)構(gòu),具體的可以取搜索一下這篇論文,詳細(xì)了解一下。

接下來我將介紹一個(gè)用于偽裝目標(biāo)檢測的網(wǎng)絡(luò)SINet。假設(shè)你是一頭饑腸轆轆的雄獅,此刻你掃視著周圍,視線突然里出現(xiàn)了兩匹斑馬,他們就是你今天的獵物,美食。確定好了目標(biāo)之后,那么就開始你的獵殺時(shí)刻。所以整個(gè)過程是你先掃視周圍,我們稱之為搜索,然后,就是確認(rèn)目標(biāo),開始獵殺,我們稱之為確認(rèn)。我們的SINet就是這樣的一個(gè)結(jié)構(gòu),他分為搜索和確認(rèn)兩個(gè)模塊,前者用于搜索偽裝目標(biāo),后者用于精確定位去檢測他。

我們現(xiàn)在就具體來看看我們的SINet到底是怎么一回事。首先,我們都知道低層特征有著較多的空間細(xì)節(jié),而我們的高層特征,卻有著較多的語義信息。所以低層的特征我們可以用來構(gòu)建目標(biāo)區(qū)域,而高層特征我們則可以用來進(jìn)行目標(biāo)定位。我們將這樣一張圖片,經(jīng)過一個(gè)ResNet的特征提取器。按照我們剛才的說法,于是我們將前兩層稱為低層特征,最后兩層稱之為高層特征,而第三層我們稱之為中層特征。那么有了這樣的五層特征圖,東西已經(jīng)給我們了?我們該怎么去利用好這些東西呢?

首先是我們的搜索模塊,通過特征提取,我們得到了這么一些特征,我們希望能夠從這些特征中搜索到我們想要的東西。那我們想要的是什么呢?自然就是我們的偽裝線索了。所以我們需要對我們的特征們做一些增強(qiáng)的處理,來幫助我們完成搜索的這樣一個(gè)任務(wù)。而我們用到的方法就是RF。我們來看一下具體是怎么樣實(shí)現(xiàn)的。首先我們把整個(gè)模塊分為5個(gè)分支,這五個(gè)分支都進(jìn)行了1×1的卷積降維,我們都知道,空洞卷積的提出,其目的就是為了增大感受野,所以我們對第一個(gè)分支進(jìn)行空洞數(shù)為3的空洞卷積,對第二個(gè)分支進(jìn)行空洞數(shù)為5的空洞卷積,對第3個(gè)分支進(jìn)行空洞數(shù)為7的空洞卷積,然后將前四個(gè)分支的特征圖拼接起來,這時(shí)候,我們再采用一個(gè)1×1卷積降維的操作,與第五個(gè)分支進(jìn)行相加的操作,最后輸出增強(qiáng)后的特征圖。

94050652-7e43-11eb-8b86-12bb97331649.jpg

這個(gè)RF的結(jié)構(gòu)來自于ECCV2018的一篇論文《 Receptive field block net for accurate and fast object detection》,其作用就是幫助我們獲得足夠的感受野。

我們用RF對感受野增大來進(jìn)行搜索,那么搜索過后,我們得到了增強(qiáng)后的候選特征。我們要從候選特征得到我們最后要的偽裝目標(biāo)的檢測結(jié)果,這里我們用到的方法是PDC模塊(即是部分解碼組件)。

具體操作是這樣的,所以接下來就應(yīng)該是對它們進(jìn)行處理了逐元素相乘方式來減少相鄰特征之間的差距。我們把RF增強(qiáng)后的特征圖作為輸入,輸入到網(wǎng)絡(luò)里面。首先對低層的進(jìn)行一個(gè)上采樣,然后進(jìn)行3×3的卷積操作(這里面包含了卷積層,BN層還有Relu層),然后與更高一層的特征圖進(jìn)行乘法的這樣一個(gè)操作,我們?yōu)槭裁词褂弥鹪叵喑四??因?yàn)橹鹪叵喑朔绞侥軠p少相鄰特征之間的差距。然后我們再與輸入的低層特征進(jìn)行拼接。

943d0340-7e43-11eb-8b86-12bb97331649.jpg

我們前面提到了,我們利用增強(qiáng)后的特征通過PDC得到了我們想要得到的檢測結(jié)果,但這樣的一個(gè)結(jié)果足夠精細(xì)嗎?其實(shí),這樣得到的檢測結(jié)果是比較粗略的。這是為什么呢?這是因?yàn)槲覀兊奶卣髦g并不是有和偽裝檢測不相關(guān)的特征?對于這樣的多余的特征,我們要消滅掉。我們將前面得到的檢測圖稱之為,而我們要得到精細(xì)的結(jié)果圖,就得使用我們的注意力機(jī)制了。這里我們引入了搜索注意力,具體是怎么實(shí)現(xiàn)的呢?大家想一想我們前面把特征分成了低層特征、高層特征還有中層特征。我們平時(shí)一般都叫低層特征和高層特征,很少有提到中層特征的。其實(shí)我們這里這樣叫,是有打算的,我們認(rèn)為中層特征他既不像低層特征那么淺顯,也不像高層特征那樣抽象,所以我們對他進(jìn)行一個(gè)卷積操作(但是我們的卷積核用的是高斯核函數(shù)方差取32,核的尺寸我們?nèi)?,我們學(xué)過數(shù)字圖像處理,都知道這樣的一個(gè)操作能起到一個(gè)濾波的作用,我們的不相關(guān)特征能被過濾掉)但是有同學(xué)就會問了,那你這樣一過濾,有用的特征不也過濾掉了嗎?基于這樣的考慮,我們把過濾后的特征圖與剛才的這個(gè)再來做一個(gè)函數(shù),什么函數(shù)呢?就是一個(gè)最大化函數(shù),這樣我們不就能來突出偽裝圖初始的偽裝區(qū)域了嗎?

SINet整體的框架如圖所示:

94cda62a-7e43-11eb-8b86-12bb97331649.jpg

講了這么多,我們最后來看看實(shí)驗(yàn)的效果,通過對這三篇文章的復(fù)現(xiàn),我得到了下面的這樣一些結(jié)果。

951437b6-7e43-11eb-8b86-12bb97331649.jpg

可以看出,在精度指標(biāo)的評價(jià)方面,SINet相比于其他兩種方法都有很大提升,而PFANet模型結(jié)構(gòu)雖然很簡單,但他的效果也是最差的。

下面我們再看看可視化的效果:

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 模塊
    +關(guān)注

    關(guān)注

    7

    文章

    2788

    瀏覽量

    50392
  • 檢測
    +關(guān)注

    關(guān)注

    5

    文章

    4643

    瀏覽量

    92847
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794

原文標(biāo)題:詳解基于深度學(xué)習(xí)的偽裝目標(biāo)檢測

文章出處:【微信號:cas-ciomp,微信公眾號:中科院長春光機(jī)所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    基于LockAI視覺識別模塊:C++目標(biāo)檢測

    是基于百度飛槳深度學(xué)習(xí)框架開發(fā)的一個(gè)高效的目標(biāo)檢測庫,支持多種先進(jìn)的目標(biāo)檢測模型,如 YOLO
    發(fā)表于 06-06 14:43

    提高IT運(yùn)維效率,深度解讀京東云AIOps落地實(shí)踐(異常檢測篇)

    基于深度學(xué)習(xí)對運(yùn)維時(shí)序指標(biāo)進(jìn)行異常檢測,快速發(fā)現(xiàn)線上業(yè)務(wù)問題 時(shí)間序列的異常檢測是實(shí)際應(yīng)用中的一個(gè)關(guān)鍵問題,尤其是在 IT 行業(yè)。我們沒有采用傳統(tǒng)的基于閾值的方法來實(shí)現(xiàn)異常
    的頭像 發(fā)表于 05-22 16:38 ?432次閱讀
    提高IT運(yùn)維效率,<b class='flag-5'>深度</b>解讀京東云AIOps落地實(shí)踐(異常<b class='flag-5'>檢測</b>篇)

    基于RK3576開發(fā)板的車輛檢測算法

    車輛檢測是一種基于深度學(xué)習(xí)的對人進(jìn)行檢測定位的目標(biāo)檢測,能廣泛的用于園區(qū)管理、交通分析等多種場景
    的頭像 發(fā)表于 05-08 17:34 ?912次閱讀
    基于RK3576開發(fā)板的車輛<b class='flag-5'>檢測</b>算法

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    行業(yè)首創(chuàng):基于深度學(xué)習(xí)視覺平臺的AI驅(qū)動輪胎檢測自動化

    全球領(lǐng)先的輪胎制造商 NEXEN TIRE 在其輪胎生產(chǎn)檢測過程中使用了基于友思特伙伴Neurocle開發(fā)的AI深度學(xué)習(xí)視覺平臺,實(shí)現(xiàn)缺陷檢測率高達(dá)99.96%,是該行業(yè)首個(gè)使用AI平
    的頭像 發(fā)表于 03-19 16:51 ?444次閱讀
    行業(yè)首創(chuàng):基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>視覺平臺的AI驅(qū)動輪胎<b class='flag-5'>檢測</b>自動化

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?539次閱讀

    采用華為云 Flexus 云服務(wù)器 X 實(shí)例部署 YOLOv3 算法完成目標(biāo)檢測

    一、前言 1.1 開發(fā)需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務(wù)器 X 實(shí)例部署 YOLOv3 算法,完成圖像分析、目標(biāo)檢測。 隨著計(jì)算機(jī)視覺技術(shù)的飛速發(fā)展,深度學(xué)習(xí)
    的頭像 發(fā)表于 01-02 12:00 ?543次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實(shí)例部署 YOLOv3 算法完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級目標(biāo)檢測模型,具有非常高的檢測精度,可以在低算力設(shè)備進(jìn)行實(shí)時(shí)的端到端推理檢測
    發(fā)表于 12-19 14:33

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1918次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?657次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1373次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1234次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2893次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,共同進(jìn)步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個(gè)熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    深度識別算法包括哪些內(nèi)容

    :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過卷積層、池化層和全連接層等組件,實(shí)現(xiàn)對圖像特征的自動提取和識別。 應(yīng)用領(lǐng)域 :CNN在圖像識別、目標(biāo)檢測、視頻分
    的頭像 發(fā)表于 09-10 15:28 ?843次閱讀