一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

你們知道深度學(xué)習(xí)框架制造原理嗎

新機(jī)器視覺 ? 來源:易學(xué)教程 ? 作者: 帥比萌擦擦 ? 2021-06-19 09:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新一代人工智能技術(shù)的發(fā)展,離不的兩大基礎(chǔ)是:芯片、深度學(xué)習(xí)框架,隨著中國科研創(chuàng)新能力的提升,這兩方面技術(shù)取得了大量的突破。

當(dāng)然,這也是一種技術(shù)封鎖的倒逼,去年出現(xiàn)的華為芯片供應(yīng)鏈被全面封鎖,和工科神器MATLAB被禁事件,這兩件事情加起來,迫使我國要從基礎(chǔ)架構(gòu)平臺到應(yīng)用系統(tǒng)等,全方位建設(shè)自主知識的優(yōu)秀產(chǎn)品。

01

發(fā) 展

作為人工智能的核心技術(shù),深度學(xué)習(xí)來說,無論是學(xué)術(shù)領(lǐng)域、還是工業(yè)領(lǐng)域,均發(fā)揮著十分重要的作用。

過去十年,深度學(xué)習(xí)領(lǐng)域涌現(xiàn)了大量算法和應(yīng)用。在這些深度學(xué)習(xí)算法和應(yīng)用涌現(xiàn)的背后,是各種各樣的深度學(xué)習(xí)工具和框架。TensorFlow 和 PyTorch 等深度學(xué)習(xí)框架是機(jī)器學(xué)習(xí)革命的腳手架,它們的廣發(fā)使用,使得許多從業(yè)者能夠使用適合領(lǐng)域特定編程語言,和豐富構(gòu)建模塊,以便于更容易地組裝模型。

回顧深度學(xué)習(xí)框架的演變,深度學(xué)習(xí)框架和深度學(xué)習(xí)算法之間的緊密耦合關(guān),讓我們知道了這種,互依賴良性循環(huán),推動(dòng)了深度學(xué)習(xí)框架和工具的快速發(fā)展。

02

趨 勢

我們正在處于一場人工智能革命的黎明,人工智能領(lǐng)域的新研究和應(yīng)用框架,正在以前所未有的速度涌現(xiàn)。

八、九年前的AlexNet 網(wǎng)絡(luò),只包含了大概6000 萬個(gè)參數(shù),而 GPT-3 網(wǎng)絡(luò)竟然包含了 1750 億參數(shù),網(wǎng)絡(luò)規(guī)模在短短不到十年的時(shí)間,迅猛增加了 3000 倍。但我們要知道,人類的大腦包含了100萬億個(gè)突觸,也就相當(dāng)于100萬億參數(shù)。所以,神經(jīng)網(wǎng)絡(luò)要達(dá)到人類的智能水平還有很大的差距。

這種難以接受的網(wǎng)絡(luò)規(guī)模,對現(xiàn)有的模型訓(xùn)練和推理的硬件、軟件計(jì)算效率都提出了很大的挑戰(zhàn)。未來的深度學(xué)習(xí)框架很可能是算法、高性能計(jì)算、硬件加速器和分布式系統(tǒng)的跨學(xué)科成果。

03

挑 戰(zhàn)

然而,對于深度學(xué)習(xí)相關(guān)的初學(xué)者,還是對于已經(jīng)從事相關(guān)工作的算法工程師來說,深度學(xué)習(xí)理論太難學(xué),開發(fā)過程太復(fù)雜,又將許多人拒之于深度學(xué)習(xí)的門外。

而大廠等一線企業(yè)在這方面的需求也是迫在眉睫,阿里云也正式開深,是業(yè)界首個(gè)面向NLP場景的深度遷移學(xué)習(xí)框架。人才渴求之大,人才缺口異常嚴(yán)峻。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    460

    文章

    52520

    瀏覽量

    440944
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49028

    瀏覽量

    249521
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794

原文標(biāo)題:詳解深度學(xué)習(xí)框架制造原理

文章出處:【微信號:vision263com,微信公眾號:新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    百度飛槳框架3.0正式版發(fā)布

    大模型訓(xùn)練成本高?推理效率低?硬件適配難? 4月1日,百度發(fā)布 飛槳框架3.0正式版 !五大特性專為大模型設(shè)計(jì)。 作為大模型時(shí)代的Infra“基礎(chǔ)設(shè)施”,深度學(xué)習(xí)框架的重要性愈發(fā)凸顯,
    的頭像 發(fā)表于 04-02 19:03 ?724次閱讀
    百度飛槳<b class='flag-5'>框架</b>3.0正式版發(fā)布

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?885次閱讀

    如何排除深度學(xué)習(xí)工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?538次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?862次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1918次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?657次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1368次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1069次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1234次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2892次閱讀

    深度學(xué)習(xí)GPU加速效果如何

    圖形處理器(GPU)憑借其強(qiáng)大的并行計(jì)算能力,成為加速深度學(xué)習(xí)任務(wù)的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?615次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    。FPGA的優(yōu)勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學(xué)習(xí)未來會怎樣發(fā)展,能走多遠(yuǎn),你怎么看。 A:FPGA 在深度
    發(fā)表于 09-27 20:53

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動(dòng)駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1149次閱讀