一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA GPU助力提升模型訓(xùn)練和推理性價比

GLeX_murata_eet ? 來源:NVIDIA英偉達(dá)企業(yè)解決方案 ? 作者:NVIDIA英偉達(dá)企業(yè)解 ? 2021-08-23 17:09 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

無量推薦系統(tǒng)承載著騰訊PCG(平臺與內(nèi)容事業(yè)群)的推薦場景,包括: 騰訊看點(diǎn)(瀏覽器、QQ看點(diǎn)、商業(yè)化)、騰訊新聞、騰訊視頻、騰訊音樂、閱文、應(yīng)用寶、小鵝拼拼等。無量推薦系統(tǒng)支持日活躍用戶達(dá)數(shù)億級別,其中的模型數(shù)量達(dá)數(shù)千個,日均調(diào)用服務(wù)達(dá)到千億級別。無量推薦系統(tǒng),在模型訓(xùn)練和推理都能夠進(jìn)行海量Embedding和DNN模型的GPU計(jì)算,是目前業(yè)界領(lǐng)先的體系結(jié)構(gòu)設(shè)計(jì)。

傳統(tǒng)推薦系統(tǒng)面臨挑戰(zhàn)

傳統(tǒng)推薦系統(tǒng)具有以下特點(diǎn): 訓(xùn)練是基于參數(shù)服務(wù)器的框架,解決海量數(shù)據(jù)和稀疏特征的分布式訓(xùn)練問題。推理通常分離大規(guī)模Embedding和DNN,只能進(jìn)行DNN的GPU加速。 所以,傳統(tǒng)的推薦系統(tǒng)架構(gòu)具有一些局限性:1. 大規(guī)模分布式架構(gòu)有大量的額外開銷,比如參數(shù)和梯度的網(wǎng)絡(luò)收發(fā)。2. 隨著DNN模型復(fù)雜性的的進(jìn)一步提升,CPU的計(jì)算速度開始捉襟見肘。 隨著業(yè)務(wù)的快速增長,日活用戶增多,對其調(diào)用數(shù)量快速增加,給推薦系統(tǒng)后臺帶來了新的挑戰(zhàn):1. 模型更加復(fù)雜,計(jì)算量更大,但是參數(shù)服務(wù)器的分布式架構(gòu)有效計(jì)算比很低。2. 海量Embedding因?yàn)橐?guī)模龐大,查詢和聚合計(jì)算難以有效利用GPU高性能顯存和算力的優(yōu)勢。

GPU助力提升模型訓(xùn)練和推理性價比

基于以上的挑戰(zhàn),騰訊PCG(平臺與內(nèi)容事業(yè)群)選擇使用基于NVIDIA A100 GPU的分布式系統(tǒng)架構(gòu)來創(chuàng)建無量推薦系統(tǒng)。

1. 通過多級存儲和Pipeline優(yōu)化,在HPC上完成大規(guī)模推薦模型的GPU的高性能訓(xùn)練。2. 基于特征訪問Power-law分布的特性,GPU緩存高頻特征參數(shù),同時從CPU中動態(tài)獲取低頻特征參數(shù),實(shí)現(xiàn)了大規(guī)模推薦模型完整的GPU端到端模型推理。

騰訊PCG有多種類型的推薦業(yè)務(wù)場景。比如信息流推薦的QQ瀏覽器、QQ看點(diǎn)、新聞推薦的騰訊新聞、視頻推薦的騰訊視頻、微視、App推薦的應(yīng)用寶、以及騰訊音樂的音樂推薦和閱文集團(tuán)的文學(xué)推薦。

無量推薦系統(tǒng)承載了這些推薦業(yè)務(wù)場景的模型訓(xùn)練和推理服務(wù)?;趥鹘y(tǒng)的推薦系統(tǒng)架構(gòu),無量推薦系統(tǒng)使用大量CPU資源,通過分布式架構(gòu)可以擴(kuò)展到TB級模型的訓(xùn)練和部署,取得了巨大的成功。隨著業(yè)務(wù)的快速增長,日活用戶增多,對其調(diào)用數(shù)量快速增加,傳統(tǒng)架構(gòu)局限性限制了推薦系統(tǒng)的架構(gòu)擴(kuò)展和性能提升。

通過使用GPU訓(xùn)練和推理,單機(jī)多卡的GPU算力可以達(dá)到數(shù)十臺CPU機(jī)器的算力,節(jié)省了大量的額外分布式開銷。通過充分利用A100 GPU高性能顯存快速訪問Embedding,以及并行算力處理DNN推理,單張A100 GPU可以在相同的延遲下推理10倍于CPU的打分樣本。目前基于GPU的推薦架構(gòu)可以提升模型訓(xùn)練和推理性價比1~3倍。

未來,無量推薦系統(tǒng)將不斷優(yōu)化推薦模型在GPU上的應(yīng)用,利用HPC多機(jī)多卡,混合精度等能力,進(jìn)一步提高推薦場景使用GPU的性價比。

重磅!NVIDIA行業(yè)微站一睹為快!內(nèi)容涵蓋NVIDIA主要的12大行業(yè)方案,以及NVIDIA當(dāng)期重點(diǎn)產(chǎn)品資料。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5309

    瀏覽量

    106425

原文標(biāo)題:NVIDIA A100 GPU助力騰訊PCG加速無量推薦系統(tǒng)

文章出處:【微信號:murata-eetrend,微信公眾號:murata-eetrend】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在Ollama中使用OpenVINO后端

    /GPU/NPU)為模型推理提供了高效的加速能力。這種組合不僅簡化了模型的部署和調(diào)用流程,還顯著提升
    的頭像 發(fā)表于 04-14 10:22 ?475次閱讀

    英偉達(dá)GTC25亮點(diǎn):NVIDIA Dynamo開源庫加速并擴(kuò)展AI推理模型

    NVIDIA Dynamo 提高了推理性能,同時降低了擴(kuò)展測試時計(jì)算 (Scaling Test-Time Compute) 的成本;在 NVIDIA Blackwell 上的推理優(yōu)化
    的頭像 發(fā)表于 03-20 15:03 ?651次閱讀

    NVIDIA 推出開放推理 AI 模型系列,助力開發(fā)者和企業(yè)構(gòu)建代理式 AI 平臺

    NVIDIA訓(xùn)練的全新 Llama Nemotron 推理模型,為代理式 AI 提供業(yè)務(wù)就緒型基礎(chǔ) 埃森哲、Amdocs、Atlassian、Box、Cadence、CrowdStrike
    發(fā)表于 03-19 09:31 ?237次閱讀
    <b class='flag-5'>NVIDIA</b> 推出開放<b class='flag-5'>推理</b> AI <b class='flag-5'>模型</b>系列,<b class='flag-5'>助力</b>開發(fā)者和企業(yè)構(gòu)建代理式 AI 平臺

    摩爾線程GPU原生FP8計(jì)算助力AI訓(xùn)練

    并行訓(xùn)練推理,顯著提升訓(xùn)練效率與穩(wěn)定性。摩爾線程是國內(nèi)率先原生支持FP8計(jì)算精度的國產(chǎn)GPU企業(yè),此次開源不僅為AI
    的頭像 發(fā)表于 03-17 17:05 ?610次閱讀
    摩爾線程<b class='flag-5'>GPU</b>原生FP8計(jì)算<b class='flag-5'>助力</b>AI<b class='flag-5'>訓(xùn)練</b>

    YOLOv5類中rgb888p_size這個參數(shù)要與模型推理訓(xùn)練的尺寸一致嗎?一致會達(dá)到更好的效果?

    YOLOv5類中rgb888p_size這個參數(shù)要與模型推理訓(xùn)練的尺寸一致嗎,一致會達(dá)到更好的效果
    發(fā)表于 03-11 08:12

    無法在GPU上運(yùn)行ONNX模型的Benchmark_app怎么解決?

    在 CPU 和 GPU 上運(yùn)行OpenVINO? 2023.0 Benchmark_app推斷的 ONNX 模型。 在 CPU 上推理成功,但在 GPU 上失敗。
    發(fā)表于 03-06 08:02

    壁仞科技支持DeepSeek-V3滿血版訓(xùn)練推理

    DeepSeek-V3滿血版在國產(chǎn)GPU平臺的高效全棧式訓(xùn)練推理,實(shí)現(xiàn)國產(chǎn)大模型與國產(chǎn)GPU的深度融合優(yōu)化,開啟國產(chǎn)算力新篇章。
    的頭像 發(fā)表于 03-04 14:01 ?1006次閱讀

    使用NVIDIA推理平臺提高AI推理性

    NVIDIA推理平臺提高了 AI 推理性能,為零售、電信等行業(yè)節(jié)省了數(shù)百萬美元。
    的頭像 發(fā)表于 02-08 09:59 ?723次閱讀
    使用<b class='flag-5'>NVIDIA</b><b class='flag-5'>推理</b>平臺提高AI<b class='flag-5'>推理性</b>能

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過程中,大量的計(jì)算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長的。接下來,AI部落小編帶您了解GPU是如何
    的頭像 發(fā)表于 12-19 17:54 ?749次閱讀

    解鎖NVIDIA TensorRT-LLM的卓越性能

    Batching、Paged KV Caching、量化技術(shù) (FP8、INT4 AWQ、INT8 SmoothQuant 等) 以及更多功能,確保您的 NVIDIA GPU 能發(fā)揮出卓越的推理性能。
    的頭像 發(fā)表于 12-17 17:47 ?876次閱讀

    PyTorch GPU 加速訓(xùn)練模型方法

    在深度學(xué)習(xí)領(lǐng)域,GPU加速訓(xùn)練模型已經(jīng)成為提高訓(xùn)練效率和縮短訓(xùn)練時間的重要手段。PyTorch作為一個流行的深度學(xué)習(xí)框架,提供了豐富的工具和
    的頭像 發(fā)表于 11-05 17:43 ?1413次閱讀

    NVIDIA助力麗蟾科技打造AI訓(xùn)練推理加速解決方案

    麗蟾科技通過 Leaper 資源管理平臺集成 NVIDIA AI Enterprise,為企業(yè)和科研機(jī)構(gòu)提供了一套高效、靈活的 AI 訓(xùn)練推理加速解決方案。無論是在復(fù)雜的 AI 開發(fā)任務(wù)中,還是在高并發(fā)
    的頭像 發(fā)表于 10-27 10:03 ?831次閱讀
    <b class='flag-5'>NVIDIA</b><b class='flag-5'>助力</b>麗蟾科技打造AI<b class='flag-5'>訓(xùn)練</b>與<b class='flag-5'>推理</b>加速解決方案

    為什么ai模型訓(xùn)練要用gpu

    GPU憑借其強(qiáng)大的并行處理能力和高效的內(nèi)存系統(tǒng),已成為AI模型訓(xùn)練不可或缺的重要工具。
    的頭像 發(fā)表于 10-24 09:39 ?977次閱讀

    開箱即用,AISBench測試展示英特爾至強(qiáng)處理器的卓越推理性

    近期,第五代英特爾?至強(qiáng)?可擴(kuò)展處理器通過了中國電子技術(shù)標(biāo)準(zhǔn)化研究院組織的人工智能服務(wù)器系統(tǒng)性能測試(AISBench)。英特爾成為首批通過AISBench大語言模型(LLM)推理性能測試的企業(yè)
    的頭像 發(fā)表于 09-06 15:33 ?825次閱讀
    開箱即用,AISBench測試展示英特爾至強(qiáng)處理器的卓越<b class='flag-5'>推理性</b>能

    魔搭社區(qū)借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社區(qū)是中國最具影響力的模型開源社區(qū),致力給開發(fā)者提供模型即服務(wù)的體驗(yàn)。魔搭社區(qū)利用NVIDIA TensorRT-LLM,大大提高了大語言模型
    的頭像 發(fā)表于 08-23 15:48 ?1141次閱讀