一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過神經(jīng)網(wǎng)絡預測抗新冠病毒藥物協(xié)同作用

星星科技指導員 ? 來源:NVIDIA ? 作者:Michelle Horton ? 2022-04-07 17:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

麻省理工學院(MIT)的一項新研究可以為醫(yī)護人員提供有效治療新冠病毒-19患者所需的信息。最近,在美國國家科學院院刊的發(fā)布中,該研究開發(fā)了一個深度學習模型,該模型確定了對抗病毒的最佳藥物組合,盡管數(shù)據(jù)相對有限。

“通常,研究人員利用癌癥和心血管疾病等大型現(xiàn)有數(shù)據(jù)集建立深度學習模型,但這些模型無法用于數(shù)據(jù)有限的新疾病。我們的工作表明,我們可以通過整合不同種類的生物學知識來克服數(shù)據(jù)匱乏的挑戰(zhàn),”主要作者金文功說,博德研究所埃里克和溫迪·施密特中心博士后助理,麻省理工學院博士。

隨著大量美國人未接種疫苗,突破性病例不斷增加,變異威脅迫在眉睫,有效的藥物組合仍然是緩解新冠病毒 -19 的核心??共《舅幬?、治療性單克隆抗體和皮質(zhì)類固醇等治療選擇已被證明是有效的。但關(guān)于最佳治療組合的問題還不清楚,同時也限制了可能的副作用。

了解這些藥物協(xié)同作用可以幫助患者更快地康復,增加生存的可能性,并減輕醫(yī)院資源的壓力。

訓練深度學習算法以識別治療疾病有效的藥物組合通常需要大量數(shù)據(jù)集。作為一種與癌癥、艾滋病毒或心臟病等疾病相比數(shù)據(jù)較少的新病毒,新冠病毒 -19 對模型開發(fā)提出了更大的挑戰(zhàn)。

研究人員采用一種新的雙管齊下的方法,創(chuàng)建了一種能夠處理有限數(shù)據(jù)的方法。首先,研究小組訓練了一個神經(jīng)網(wǎng)絡來預測藥物是否會與生物靶點結(jié)合。這些靶點通過為藥物創(chuàng)造一個結(jié)合和抑制疾病生長的場所,在藥物治療中發(fā)揮著重要作用。對于新冠病毒 -19 ,這些靶點包括參與病毒復制的酶和蛋白質(zhì)。

基于藥物的分子結(jié)構(gòu)和疾病的生物靶點,一個模型還可以計算單一藥物的抗病毒效果?;诖诵畔?,協(xié)同預測模型結(jié)合計算藥物治療的效力,確定最有效的組合。

神經(jīng)網(wǎng)絡模型采用 NVIDIA GPU 和cuDNN加速深度學習框架來訓練和處理數(shù)據(jù)。通過 88 種不同的治療方案,研究小組確定了兩種主要的對抗病毒藥物:抗病毒藥物 remdesivir 與高血壓藥物利血平聯(lián)合使用,以及 remdesivir 與 IQ-1S (一種激酶抑制劑)聯(lián)合使用

圖 1 ComboNet 接受藥物組合協(xié)同作用、單藥抗病毒活性和藥物 – 靶點相互作用數(shù)據(jù)方面的培訓。資料來源: Jin 等人/ PNAS

該模型也適用于其他病原體。據(jù)金說,研究小組一直在與美國國立衛(wèi)生研究院合作,尋找治療胰腺癌的藥物組合。

關(guān)于作者

Michelle Horton 是 NVIDIA 的高級開發(fā)人員通信經(jīng)理,擁有通信經(jīng)理和科學作家的背景。她在 NVIDIA 為開發(fā)者博客撰文,重點介紹了開發(fā)者使用 NVIDIA 技術(shù)的多種方式。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103661
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122805
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡來實現(xiàn)轉(zhuǎn)角預測,并采用改進遺傳算法來訓練網(wǎng)絡結(jié)
    發(fā)表于 06-25 13:06

    使用BP神經(jīng)網(wǎng)絡進行時間序列預測

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡進行時間序列預測是一種常見且有效的方法。以下是一個基于BP神經(jīng)網(wǎng)絡進行時間序列預測的詳細步驟和考慮因素: 一、數(shù)據(jù)準備 收集數(shù)據(jù) :
    的頭像 發(fā)表于 02-12 16:44 ?774次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    自學習能力 : BP神經(jīng)網(wǎng)絡能夠通過訓練數(shù)據(jù)自動調(diào)整網(wǎng)絡參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務,無需人工進行復雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:36 ?926次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    神經(jīng)網(wǎng)絡(即反向傳播神經(jīng)網(wǎng)絡)的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡的學習算法。該算法通過計算每層網(wǎng)絡的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡權(quán)重,
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負責接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡的核心部分,它可以通過一層或多層神經(jīng)元對輸入數(shù)據(jù)進行加權(quán)求和,并通過非線性
    的頭像 發(fā)表于 02-12 15:13 ?864次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    BP神經(jīng)網(wǎng)絡在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡能夠?qū)W習到復雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡在圖像識別中應用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?681次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領(lǐng)域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(前饋神經(jīng)網(wǎng)絡) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡,通常指的是前饋神經(jīng)網(wǎng)絡(Feedforward Neural Networks, FNN),是一種最簡單的人工
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu)與工作機制

    的結(jié)構(gòu)與工作機制的介紹: 一、LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網(wǎng)絡的核心,負責在整個序列處理過程中保持和更新長期依賴信息。 它主要由
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    神經(jīng)網(wǎng)絡(RNN) RNN的基本結(jié)構(gòu) RNN是一種特殊的神經(jīng)網(wǎng)絡,它能夠處理序列數(shù)據(jù)。在RNN中,每個時間步的輸入都會通過一個循環(huán)結(jié)構(gòu)傳遞到下一個時間步,使得網(wǎng)絡能夠保持對之前信息的記
    的頭像 發(fā)表于 11-13 09:58 ?1218次閱讀

    LSTM神經(jīng)網(wǎng)絡在時間序列預測中的應用

    時間序列預測是數(shù)據(jù)分析中的一個重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預測未來值。隨著深度學習技術(shù)的發(fā)展,長短期記憶(LSTM)神經(jīng)網(wǎng)絡因其在處理序列數(shù)據(jù)方面的優(yōu)勢而受到廣泛關(guān)注。 LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 09:54 ?2054次閱讀

    matlab 神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14