一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA Jetson Nano開發(fā)套件具有實時計算機視覺和推理

星星科技指導員 ? 來源:NVIDIA ? 作者:Dustin Franklin ? 2022-04-18 15:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

GPU 在 2019 年 NVIDIA NVIDIA 技術會議( GTC )上宣布推出了 Jetson Nano 開發(fā)者套件 ,這是一款售價 99 美元的計算機,目前可供嵌入式設計師、研究人員和 DIY 制造商使用,在一個緊湊、易于使用的平臺上實現(xiàn)了現(xiàn)代人工智能的強大功能,具有完全的軟件可編程性。 Jetson Nano 通過一個四核 64 位 ARMCPU 和一個 128 核集成的 NVIDIA GPU ,提供 472 GFLOPS 的計算性能。它還包括 4GB LPDDR4 內(nèi)存在一個高效的低功耗封裝中,具有 5W / 10W 電源模式和 5V 直流輸入。

最新發(fā)布的 JetPack 4 。 2 SDK 開發(fā)包 為基于 Ubuntu 18 。 04 的 Jetson Nano 提供了一個完整的桌面 Linux 環(huán)境,支持加速的圖形,支持 NVIDIA CUDA toolk10 。 0 ,以及 cuDNN 7 。 3 和 TensorRT 5 等庫。 SDK 還包括在本地安裝流行的開源機器學習( ML )框架,如 TensorFlow , PyTorch 、 Caffe 、 Keras 和 MXNet ,以及 OpenCV 和 ROS計算機視覺機器人開發(fā)框架。

與這些框架和 NVIDIA 領先的人工智能平臺完全兼容,使得將基于人工智能的推理工作負載部署到 Jetson 上比以往任何時候都容易。 Jetson Nano 為各種復雜的深層神經(jīng)網(wǎng)絡( DNN )模型帶來了實時計算機視覺和推理。這些功能使多傳感器自主機器人、具有智能邊緣分析的物聯(lián)網(wǎng)設備和先進的人工智能系統(tǒng)成為可能。甚至傳輸學習也可以使用 ML 框架在 Jetson Nano 上重新訓練網(wǎng)絡。

Jetson Nano 開發(fā)套件的尺寸僅為 80×100 毫米,具有四個高速 USB 3 。 0 端口、 MIPI CSI-2 攝像頭接口、 HDMI 2 。 0 和 DisplayPort 1 。 3 、千兆以太網(wǎng)、 M 。 2 Key-E 模塊、 MicroSD 卡插槽和 40 針 GPIO 頭。端口和 GPIO 頭可以與各種流行的外圍設備、傳感器和現(xiàn)成的項目一起使用,例如 NVIDIA 在 GitHub 上開源的 3D 可打印深度學習 噴氣式飛機。 。

devkit 從一個可移動 MicroSD 卡啟動,該卡可以在任何帶有 SD 卡適配器的 PC 上格式化和成像。 devkit 可以方便地通過 Micro-USB 端口或 5V 直流桶形插孔適配器供電。攝像頭連接器與價格合理的 MIPI CSI 傳感器兼容,包括基于 8MP IMX219 的模塊,可從 Jetson 生態(tài)系統(tǒng)合作伙伴處獲得。同時支持的還有 Raspberry Pi 攝像頭模塊 v2 ,它包括 JetPack 中的驅(qū)動程序支持。主要規(guī)格見表 1 。

devkit 是圍繞一個 260 針 SODIMM 風格的系統(tǒng) on Module ( SoM )構(gòu)建的,如圖 2 所示。 SoM 包含處理器、內(nèi)存和電源管理電路。 Jetson 納米計算模塊尺寸為 45x70mm ,將于 2019 年 6 月開始發(fā)貨,售價 129 美元( 1000 單位體積),供嵌入式設計師集成到生產(chǎn)系統(tǒng)中。生產(chǎn)計算模塊將包括 16GB eMMC 板載存儲和增強 I / O , PCIe Gen2 x4 / x2 / x1 、 MIPI DSI 、附加 GPIO 和 12 通道 MIPI CSI-2 在 x4 / x2 配置中,最多可連接三個 x4 攝像頭或四個攝像頭。 Jetson 的統(tǒng)一內(nèi)存子系統(tǒng)在 CPU 、 GPU 和多媒體引擎之間共享,提供了流線型的零拷貝傳感器攝取和高效的處理管道。

深度學習推理基準

Jetson Nano 可以運行多種高級網(wǎng)絡,包括流行 ML 框架的完整本機版本,如 TensorFlow 、 PyTorch 、 Caffe / Caffe2 、 Keras 、 MXNet 等。這些網(wǎng)絡可用于構(gòu)建自主機器和復雜的人工智能系統(tǒng),實現(xiàn)強大的功能,如圖像識別、目標檢測和定位、姿勢估計、語義分割、視頻增強和智能分析。

圖 3 顯示了來自在線可用的流行模型的推理基準測試的結(jié)果。有關在您的 Jetson Nano 上運行這些基準測試的說明,請參見 在這里 。該推斷使用批次大小 1 和 FP16 精度,使用了 Jetpack4 。 2 中包含的 NVIDIA 的 TensorRT 加速器庫。 Jetson Nano 在許多場景下都能達到實時性能,并且能夠處理多個高清視頻流。

圖 3 。使用 Jetson Nano 和 TensorRT ,使用 FP16 精度和批量大小 1 的各種深度學習推理網(wǎng)絡的性能

表 2 提供了完整的結(jié)果,包括 Raspberry Pi3 、 Intel Neural Compute Stick 2 和 Google Edge TPU Coral Dev Board 等其他平臺的性能:

由于內(nèi)存容量有限、不受支持的網(wǎng)絡層或硬件/軟件限制,經(jīng)常出現(xiàn) DNR (未運行)結(jié)果。固定函數(shù)神經(jīng)網(wǎng)絡加速器通常支持相對狹窄的用例集,硬件支持專用層操作,網(wǎng)絡權重和激活需要適應有限的片上緩存,以避免嚴重的數(shù)據(jù)傳輸損失。它們可以依靠主機 CPU 來運行硬件不支持的層,并且可能依賴于支持框架的簡化子集的模型編譯器(例如 TFLite )。

Jetson Nano 靈活的軟件和完整的框架支持、內(nèi)存容量和統(tǒng)一的內(nèi)存子系統(tǒng),使其能夠運行各種不同的網(wǎng)絡,達到全高清分辨率,包括同時在多個傳感器流上運行可變的批量大小。這些基準測試代表了流行網(wǎng)絡的一個樣本,但是用戶可以在 Jetson Nano 上部署各種模型和定制架構(gòu),從而提高性能。而且 Jetson Nano 不僅僅局限于 DNN 推斷。它的 CUDA 體系結(jié)構(gòu)可用于計算機視覺和數(shù)字信號處理( DSP ),使用包括 FFT 、 BLAS 和 LAPACK 運算在內(nèi)的算法,以及用戶定義的 CUDA 內(nèi)核。

多流視頻分析

Jetson Nano 可實時處理多達 8 個高清全動態(tài)視頻流,可作為網(wǎng)絡視頻錄像機( NVR )、智能攝像頭和物聯(lián)網(wǎng)網(wǎng)關的低功耗邊緣智能視頻分析平臺進行部署。 NVIDIA 的 DeepStream 軟件開發(fā)工具包 使用 ZeroCopy 和 TensorRT 優(yōu)化端到端推斷管道,以在邊緣和本地服務器上實現(xiàn)最終性能。下面的視頻顯示 Jetson Nano 在 8 個 1080p30 流上同時執(zhí)行目標檢測,基于 ResNet 的模型以全分辨率運行,吞吐量為每秒 5 億像素( MP / s )。

基于 ResNet 在 Jetson Nano 上運行的 DeepStream 應用程序

在八個獨立的 1080p30 視頻流上并發(fā)的目標檢測器。

圖 4 中的框圖顯示了一個使用 Jetson Nano 的 NVR 架構(gòu)示例,該架構(gòu)使用深度學習分析技術,通過千兆以太網(wǎng)接收和處理多達 8 個數(shù)字流。該系統(tǒng)可以解碼 500mp / s 的 H 。 264 / H 。 265 視頻和 250mp / s 的 H 。 264 / H 。 265 視頻。

圖 4 。具有 Jetson 納米和 8x 高清攝像頭輸入的參考 NVR 系統(tǒng)架構(gòu)

Jetson Nano 的 DeepStream SDK 支持計劃于 2019 年第 2 季度發(fā)布。請加入 DeepStream 開發(fā)者計劃 以接收有關即將發(fā)布的通知。

噴氣式飛機。

圖 5 中所示的 NVIDIA 噴氣式飛機。 是一個新的開源自主機器人工具包,它提供了所有的軟件和硬件計劃,以低于 250 美元的價格構(gòu)建一個人工智能驅(qū)動的深度學習機器人。硬件材料包括 Jetson Nano 、 IMX219 8MP 攝像頭、 3D 打印機箱、電池組、電機、 I2C 電機驅(qū)動器和配件。

該項目通過 Jupyter 筆記本為您提供了簡單易學的示例,介紹了如何編寫 Python 代碼來控制電機,如何訓練 JetBot 來檢測障礙物,如何跟蹤人和家庭對象等對象,以及如何訓練 JetBot 跟蹤地板周圍的路徑。通過擴展代碼和使用 AI 框架,可以為 JetBot 創(chuàng)建新的功能。

還有 ROS 節(jié)點 可用于 JetBot ,為那些希望集成基于 ROS 的應用程序和功能(如 SLAM 和高級路徑規(guī)劃)的用戶提供 ROS Melodic 支持。包含 JetBot ROS 節(jié)點的 GitHub 存儲庫還包括 Gazebo 3D 機器人模擬器的模型,允許在虛擬環(huán)境中開發(fā)和測試新的 AI 行為,然后再部署到機器人上。 Gazebo 模擬器生成合成相機數(shù)據(jù),并在 Jetson 納米上運行。

你好,人工智能世界

你好,人工智能世界 為開始使用 TensorRT 和體驗人工智能的力量提供了一個很好的方法。只需幾個小時,您就可以在帶有 JetPack SDK 和 NVIDIA NVIDIA 的 Jetson Nano Developer Kit 上建立并運行一組用于實時圖像分類和對象檢測的深度學習推理演示。本教程側(cè)重于與計算機視覺相關的網(wǎng)絡,并包括實時攝像機的使用。你還可以在 C ++中編寫自己易于理解的識別程序。可用的 深度學習 ROS 節(jié)點 將這些識別、檢測和分段推斷功能與 ROS 公司 集成,以集成到先進的機器人系統(tǒng)和平臺中。這些實時推斷節(jié)點可以很容易地放入現(xiàn)有的 ROS 應用程序中。

想要嘗試訓練自己模型的開發(fā)人員可以按照完整的“ 還有兩天就要演示了 ”教程進行,該教程涵蓋了圖像分類、對象檢測和語義分割模型的再培訓和定制,并使用轉(zhuǎn)移學習。傳輸學習微調(diào)特定數(shù)據(jù)集的模型權重,避免了從頭訓練模型。傳輸學習最有效地在帶有 NVIDIA 離散 GPU 的 PC 或云實例上執(zhí)行,因為培訓需要比推斷更多的計算資源和時間。

然而,由于 Jetson Nano 可以運行完整的培訓框架,如 TensorFlow 、 PyTorch 和 Caffe ,它還可以通過轉(zhuǎn)移學習為那些可能無法訪問另一臺專用培訓機器并愿意等待更長時間等待結(jié)果的人進行再培訓。表 3 列出了將兩天的學習轉(zhuǎn)移到演示教程中的一些初步結(jié)果,其中 PyTorch 使用 Jetson Nano 在 20 萬張圖像上訓練 Alexnet 和 ResNet-18 , ImageNet 的 22 。 5GB 子集:

每個歷元的時間是完全通過 200K 圖像的訓練數(shù)據(jù)集所需的時間。分類網(wǎng)絡可能只需要 2-5 個周期就可以得到可用的結(jié)果,生產(chǎn)模型應該在離散 GPU 系統(tǒng)上為更多的時代進行訓練,直到它們達到最大的精度。然而, Jetson Nano 可以讓你在一個低成本的平臺上進行深度學習和人工智能的實驗,讓網(wǎng)絡在一夜之間重新訓練。并非所有的自定義數(shù)據(jù)集都可能像這里使用的 22 。 5GB 示例那樣大。因此,圖像/秒表示 Jetson Nano 的訓練性能,每歷元時間隨數(shù)據(jù)集大小、訓練批大小和網(wǎng)絡復雜性而變化。隨著訓練時間的增加,其他模型也可以在 Jetson Nano 上重新訓練。

所有人的 AI

Jetson Nano 的計算性能、緊湊的占地面積和靈活性為開發(fā)人員創(chuàng)造以人工智能為動力的設備和嵌入式系統(tǒng)帶來了無限的可能性。

關于作者

Dustin Franklin 是 NVIDIA 的 Jetson 團隊的開發(fā)人員布道者。 Dustin 擁有機器人和嵌入式系統(tǒng)方面的背景,他樂于在社區(qū)中提供幫助,并與 Jetson 一起參與項目。你可以在 NVIDIA Developer Forums 或 Github 上找到他。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 嵌入式
    +關注

    關注

    5152

    文章

    19675

    瀏覽量

    317585
  • NVIDIA
    +關注

    關注

    14

    文章

    5309

    瀏覽量

    106412
  • 人工智能
    +關注

    關注

    1806

    文章

    49028

    瀏覽量

    249521
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    Blue Lion超級計算機將在NVIDIA Vera Rubin上運行

    德國萊布尼茨超算中心(LRZ)將迎來全新超級計算機 Blue Lion,其算力比該中心現(xiàn)有的 SuperMUC-NG 高性能計算機提升了約 30 倍。這臺新的超級計算機將在 NVIDIA
    的頭像 發(fā)表于 06-12 15:39 ?413次閱讀

    NVIDIA技術賦能歐洲最快超級計算機JUPITER

    NVIDIA 宣布,搭載 NVIDIA Grace Hopper 平臺的 JUPITER 超級計算機成為歐洲最快超級計算機,其運行 HPC 和 AI 工作負載的速度是第二名的兩倍以上。
    的頭像 發(fā)表于 06-12 15:33 ?507次閱讀

    NVIDIA GTC2025 亮點 NVIDIA推出 DGX Spark個人AI計算機

    臺式超級計算機NVIDIA Grace Blackwell 驅(qū)動,為開發(fā)者、研究人員和數(shù)據(jù)科學家提供加速 AI 功能;系統(tǒng)由頭部計算機制造商(包括華碩、Dell Technolog
    的頭像 發(fā)表于 03-20 18:59 ?884次閱讀
    <b class='flag-5'>NVIDIA</b> GTC2025 亮點  <b class='flag-5'>NVIDIA</b>推出 DGX Spark個人AI<b class='flag-5'>計算機</b>

    NVIDIA 宣布推出 DGX Spark 個人 AI 計算機

    臺式超級計算機NVIDIA Grace Blackwell 驅(qū)動,為開發(fā)者、研究人員和數(shù)據(jù)科學家提供加速 AI 功能;系統(tǒng)由頭部計算機制造商(包括華碩、Dell Technolog
    發(fā)表于 03-19 09:59 ?317次閱讀
       <b class='flag-5'>NVIDIA</b> 宣布推出 DGX Spark 個人 AI <b class='flag-5'>計算機</b>

    研華NVIDIA Jetson Orin Nano系統(tǒng)支持Super Mode

    提升生成式AI性能1.7倍 2025年春季— 研華科技,作為全球工業(yè)嵌入式 AI 解決方案供應商,宣布推出搭載NVIDIA Jetson Orin Nano 8GB系統(tǒng)模塊的AI邊緣運算系統(tǒng)
    發(fā)表于 03-10 14:07 ?385次閱讀
    研華<b class='flag-5'>NVIDIA</b> <b class='flag-5'>Jetson</b> Orin <b class='flag-5'>Nano</b>系統(tǒng)支持Super Mode

    NVIDIA JetPack 6.2引入Super模式

    NVIDIA Jetson Orin Nano Super 開發(fā)套件的推出開創(chuàng)了小型邊緣設備生成式 AI 的新時代。全新的 Super 模
    的頭像 發(fā)表于 02-12 09:32 ?1105次閱讀
    <b class='flag-5'>NVIDIA</b> JetPack 6.2引入Super模式

    NVIDIA發(fā)布高性價比生成式AI超級計算機

    NVIDIA近日推出了一款全新的生成式AI超級計算機——Jetson Orin Nano Super開發(fā)
    的頭像 發(fā)表于 12-24 10:44 ?644次閱讀

    NVIDIA Jetson Orin Nano開發(fā)套件的新功能

    生成式 AI 領域正在迅速發(fā)展,每天都有新的大語言模型(LLM)、視覺語言模型(VLM)和視覺語言動作模型(VLA)出現(xiàn)。為了在這一充滿變革的時代保持領先,開發(fā)者需要一個足夠強大的平臺將云端的最新模型無縫部署到邊緣,從而獲得基于
    的頭像 發(fā)表于 12-23 12:54 ?1107次閱讀
    <b class='flag-5'>NVIDIA</b> <b class='flag-5'>Jetson</b> Orin <b class='flag-5'>Nano</b><b class='flag-5'>開發(fā)</b>者<b class='flag-5'>套件</b>的新功能

    NVIDIA發(fā)布小巧高性價比的Jetson Orin Nano Super開發(fā)套件

    NVIDIA近期推出了一款全新的生成式AI超級計算機——Jetson Orin Nano Super開發(fā)
    的頭像 發(fā)表于 12-19 11:28 ?1091次閱讀

    NVIDIA 推出高性價比的生成式 AI 超級計算機

    計算機,具有更高的性價比,通過軟件升級即可實現(xiàn)性能提升。 ? 全新 NVIDIA Jetson Orin Nano Super
    發(fā)表于 12-18 17:01 ?723次閱讀
    <b class='flag-5'>NVIDIA</b> 推出高性價比的生成式 AI 超級<b class='flag-5'>計算機</b>

    NVIDIA助力丹麥發(fā)布首臺AI超級計算機

    這臺丹麥最大的超級計算機由該國政府與丹麥 AI 創(chuàng)新中心共同建設,是一臺 NVIDIA DGX SuperPOD 超級計算機。
    的頭像 發(fā)表于 10-27 09:42 ?902次閱讀

    初創(chuàng)公司SEA.AI利用NVIDIA邊緣AI和計算機視覺技術變革航海安全系統(tǒng)

    總部位于奧地利林茨的初創(chuàng)公司正在利用 NVIDIA 邊緣 AI 和計算機視覺技術變革航海安全系統(tǒng),讓每一次出海變得更安全。
    的頭像 發(fā)表于 09-09 09:32 ?917次閱讀

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2047次閱讀

    借助NVIDIA超級計算機加速量子計算發(fā)展

    科學期刊《自然》(Nature)本月早些時候發(fā)表了一項研究,通過使用 NVIDIA 驅(qū)動的超級計算機,驗證了量子計算的商業(yè)化途徑。
    的頭像 發(fā)表于 07-25 09:55 ?919次閱讀

    計算機視覺技術的AI算法模型

    計算機視覺技術作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標,計算機視覺技術依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1807次閱讀