一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識科普

NVIDIA英偉達(dá) ? 來源:NVIDIA英偉達(dá) ? 作者:NVIDIA英偉達(dá) ? 2022-05-13 10:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)網(wǎng)絡(luò),主要用于識別圖像和對其進(jìn)行分類,以及識別圖像中的對象。

什么是卷積神經(jīng)網(wǎng)絡(luò)?

人工神經(jīng)網(wǎng)絡(luò)是一個硬件和/或軟件系統(tǒng),模仿神經(jīng)元在人類大腦中的運轉(zhuǎn)方式。卷積神經(jīng)網(wǎng)絡(luò) (CNN) 通常會在多個全連接或池化的卷積層中應(yīng)用多層感知器(對視覺輸入內(nèi)容進(jìn)行分類的算法)的變體。

CNN 的學(xué)習(xí)方式與人類相同。人類出生時并不知道貓或鳥長什么樣。隨著我們長大成熟,我們學(xué)到了某些形狀和顏色對應(yīng)某些元素,而這些元素共同構(gòu)成了一種元素。學(xué)習(xí)了爪子和喙的樣子后,我們就能更好地區(qū)分貓和鳥。

神經(jīng)網(wǎng)絡(luò)的工作原理基本也是這樣。通過處理標(biāo)記圖像的訓(xùn)練集,機(jī)器能夠?qū)W習(xí)識別元素,即圖像中對象的特征。

CNN 是頗受歡迎的深度學(xué)習(xí)算法類型之一。卷積是將濾波器應(yīng)用于輸入內(nèi)容的簡單過程,會帶來以數(shù)值形式表示的激活。通過對圖像反復(fù)應(yīng)用同一濾波器,會生成名為特征圖的激活圖。這表示檢測到的特征的位置和強度。

卷積是一種線性運算,需要將一組權(quán)重與輸入相乘,以生成稱為濾波器的二維權(quán)重數(shù)組。如果調(diào)整濾波器以檢測輸入中的特定特征類型,則在整個輸入圖像中重復(fù)使用該濾波器可以發(fā)現(xiàn)圖像中任意位置的特征。

5788b818-d1df-11ec-bce3-dac502259ad0.png

例如,一個濾波器用于檢測特定形狀的曲線,另一個濾波器用于檢測垂直線,第三個濾波器用于檢測水平線。其他濾波器可以檢測顏色、邊緣和光線強度。連接多個濾波器的輸出,即可以表示與訓(xùn)練數(shù)據(jù)中的已知元素匹配的復(fù)雜形狀。

CNN 通常由三層組成:1) 輸入層、2) 輸出層和 3) 包含多個卷積層的隱藏層,其中隱藏層為池化層、全連接層和標(biāo)準(zhǔn)化層。

57c85568-d1df-11ec-bce3-dac502259ad0.png

第一層通常用于捕捉邊緣、顏色、梯度方向和基本幾何形狀等基本特征。添加層后,此模型會填充高級特征,這些特征會逐漸確定一個大型棕色圖塊,首先是車輛,然后是汽車,然后是別克。

池化層會逐漸縮小表示的空間的大小,提高計算效率。池化層會單獨對每個特征圖進(jìn)行運算。池化層中常用的方法是最大池化,即捕捉數(shù)組的最大值,從而減少計算所需的值的數(shù)量。堆疊卷積層允許將輸入分解為其基本元素。

標(biāo)準(zhǔn)化層會對數(shù)據(jù)進(jìn)行正則化處理,以改善神經(jīng)網(wǎng)絡(luò)的性能和穩(wěn)定性。標(biāo)準(zhǔn)化層通過將所有輸入都轉(zhuǎn)換為均值為 0 且方差為 1,從而使每個層的輸入更便于管理。

全連接層用于將一層中的各個神經(jīng)元與另一層中的所有神經(jīng)元相連。

581082a2-d1df-11ec-bce3-dac502259ad0.png

為什么選擇卷積神經(jīng)網(wǎng)絡(luò)?

神經(jīng)網(wǎng)絡(luò)有三種基本類型:

多層感知器擅長使用標(biāo)記輸入處理分類預(yù)測問題。它們是可應(yīng)用于各種場景(包括圖像識別)的靈活網(wǎng)絡(luò)。

時間遞歸神經(jīng)網(wǎng)絡(luò)使用一個或多個步長作為輸入,并以多個步長作為輸出,針對序列預(yù)測問題進(jìn)行了優(yōu)化。它們擅長解讀時間序列數(shù)據(jù),但對圖像分析無效。

卷積神經(jīng)網(wǎng)絡(luò)專為將圖像數(shù)據(jù)映射到輸出變量而設(shè)計。它們特別擅長發(fā)掘二維圖像的內(nèi)部表征,可用于學(xué)習(xí)位置和尺寸不變的結(jié)構(gòu)。這使得它們特別擅長處理具有空間關(guān)系組件的數(shù)據(jù)。

CNN 已成為許多先進(jìn)深度學(xué)習(xí)(例如面部識別、手寫識別和文本數(shù)字化)方面的計算機(jī)視覺應(yīng)用程序的首選模型。此外,它還可應(yīng)用于推薦系統(tǒng)。2012 年 CNN 迎來了轉(zhuǎn)折點,當(dāng)時多倫多大學(xué)研究生 Alex Krizhevsky 使用 CNN 模型將分類錯誤記錄從 26% 降低至 15%,在當(dāng)年的 ImageNet 競賽中獲勝,這一成績在當(dāng)時令人震驚。

事實證明,在涉及圖像處理的應(yīng)用場合,CNN 模型能夠帶來出色結(jié)果和超高計算效率。雖然 CNN 模型并不是適合此領(lǐng)域的唯一深度學(xué)習(xí)模型,但這是大家共同的選擇,并且將成為未來持續(xù)創(chuàng)新的焦點。

關(guān)鍵用例

CNN 是目前機(jī)器用來識別物體的圖像處理器。CNN 已成為當(dāng)今自動駕駛汽車、石油勘探和聚變能研究領(lǐng)域的眼睛。在醫(yī)學(xué)成像方面,它們可以幫助更快速發(fā)現(xiàn)疾病并挽救生命。

得益于 CNN 和遞歸神經(jīng)網(wǎng)絡(luò) (RNN),各種 AI 驅(qū)動型機(jī)器都具備了像我們眼睛一樣的能力。經(jīng)過在深度神經(jīng)網(wǎng)絡(luò)領(lǐng)域數(shù)十年的發(fā)展以及在處理海量數(shù)據(jù)的 GPU 高性能計算方面的長足進(jìn)步,大部分 AI 應(yīng)用都已成為可能。

卷積神經(jīng)網(wǎng)絡(luò)的重要意義

數(shù)據(jù)科學(xué)團(tuán)隊

圖像識別應(yīng)用范圍廣,是許多數(shù)據(jù)科學(xué)團(tuán)隊必備的核心能力。CNN 是一項成熟的標(biāo)準(zhǔn),可為數(shù)據(jù)科學(xué)團(tuán)隊提供技能基準(zhǔn),讓他們可以學(xué)習(xí)并掌握這些技能,以滿足當(dāng)前和未來的圖像處理需求。

數(shù)據(jù)工程團(tuán)隊

了解 CNN 處理所需訓(xùn)練數(shù)據(jù)的工程師可以提前一步滿足組織需求。數(shù)據(jù)集采用規(guī)定的格式,并且工程師可以通過大量公開的數(shù)據(jù)集進(jìn)行學(xué)習(xí)。這簡化了將深度學(xué)習(xí)算法投入生產(chǎn)的過程。

借助 GPU 加速卷積神經(jīng)網(wǎng)絡(luò)

先進(jìn)的神經(jīng)網(wǎng)絡(luò)可能有數(shù)百萬乃至十億以上的參數(shù)需要通過反向傳播進(jìn)行調(diào)整。此外,它們需要大量的訓(xùn)練數(shù)據(jù)才能實現(xiàn)較高的準(zhǔn)確度,這意味著成千上萬乃至數(shù)百萬的輸入樣本必須同時進(jìn)行向前和向后傳輸。由于神經(jīng)網(wǎng)絡(luò)由大量相同的神經(jīng)元構(gòu)建而成,因此本質(zhì)上具有高度并行性。這種并行性會自然映射到 GPU,因此相比僅依賴 CPU 的訓(xùn)練,計算速度會大幅提高。

通過深度學(xué)習(xí)框架,研究人員能輕松創(chuàng)建和探索卷積神經(jīng)網(wǎng)絡(luò) (CNN) 和其他深度神經(jīng)網(wǎng)絡(luò) (DNN),同時達(dá)到實驗和工業(yè)部署所需的較高速度。NVIDIA 深度學(xué)習(xí) SDK 可加快 Caffe、CNTK、TensorFlow、Theano 和 Torch 等廣泛使用的深度學(xué)習(xí)框架以及眾多其他機(jī)器學(xué)習(xí)應(yīng)用程序的運行速度。

深度學(xué)習(xí)框架在 GPU 上的運行速度更快,并可以在單個節(jié)點內(nèi)的多個 GPU 間擴(kuò)展。為了將框架與 GPU 結(jié)合使用以進(jìn)行卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推理過程,NVIDIA 分別提供了 cuDNN 和 TensorRT。cuDNN 和 TensorRT 可大幅優(yōu)化卷積層、池化層、標(biāo)準(zhǔn)化層和激活層等標(biāo)準(zhǔn)例程的實施。

為快速開發(fā)和部署視覺模型,NVIDIA 面向視覺 AI 開發(fā)者提供了 DeepStream SDK,同時面向計算機(jī)視覺領(lǐng)域提供了 TAO 工具套件,用于創(chuàng)建準(zhǔn)確且高效的 AI 模型。

原文標(biāo)題:NVIDIA 大講堂 | 什么是卷積神經(jīng)網(wǎng)絡(luò)?

文章出處:【微信公眾號:NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:NVIDIA 大講堂 | 什么是卷積神經(jīng)網(wǎng)絡(luò)?

文章出處:【微信號:NVIDIA_China,微信公眾號:NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1212次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?847次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實驗的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14