一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

適合活細胞的超分辨顯微技術(shù)——結(jié)構(gòu)光照明顯微成像

新機器視覺 ? 來源:Teledyne Photometrics ? 作者:Teledyne Photometrics ? 2022-07-04 10:56 ? 次閱讀

克服光學衍射極限,觀察到亞細胞尺度的生物結(jié)構(gòu)和變化過程一直是生命科學研究的目標之一,也是超分辨顯微鏡誕生的目的所在。隨著現(xiàn)代顯微成像技術(shù)的發(fā)展和不斷突破,超分辨顯微成像大家庭也一直在補充新鮮血液。不過,這些形形色色的技術(shù)各自也都存在著不足:譬如前面幾期中我們提到的 PALM/ STORM/DNA-PAINT 等單分子定位技術(shù)都需要長時間的多幀采集,并需要高功率激發(fā)光。這意味著它們在很大程度上不適合對活細胞進行成像。

在超分辨顯微成像專題的最后一期中,我們將為大家介紹一種完全不同的,適合活細胞的超分辨顯微技術(shù)——結(jié)構(gòu)光照明顯微成像(Structure Illumination Microscopy, SIM)。

SIM 的原理

SIM 最早是在2005年由 Mats Gustafsson 開發(fā)并提出的,其基本原理是基于莫爾條紋(Moire pattern)——一種常用于產(chǎn)生光學錯覺的效應(yīng)。

莫爾條紋:由兩個空間頻率相近的周期性光柵圖形疊加而形成的光學條紋。當兩條線或兩個物體之間以恒定的角度和頻率發(fā)生干涉,而人眼無法分辨這兩條線或兩個物體時,只能看到干涉的花紋。

這個概念聽起來有點高深,但其實莫爾條紋是一種我們在生活中隨處可見的現(xiàn)象(圖1)。大家可以翻翻看自己穿著條紋襯衫的照片,說不定就能看到莫爾條紋的身影哦。

d4bc8402-fad6-11ec-ba43-dac502259ad0.jpg

圖1 生活中的莫爾條紋

從圖2我們可以更加直觀地了解莫爾條紋是如何用于顯示高頻信息的:當兩個小尺寸(高頻)網(wǎng)格疊加覆蓋在最右邊的圖像中時,它們之間發(fā)生干涉后就會顯示一個較大尺寸(低頻)的網(wǎng)格,這個網(wǎng)格會包含兩個較小網(wǎng)格的信息。

d4d9fcee-fad6-11ec-ba43-dac502259ad0.jpg

圖2 兩個相互成一定角度重疊的細網(wǎng)格相互干涉形成的莫爾條紋。From Wikimedia commons

在實際使用時,通過在照明光路中插入一個結(jié)構(gòu)光的發(fā)生裝置(如光柵,空間光調(diào)制器,或者數(shù)字微鏡陣列DMD等),照明光受到調(diào)制后,形成亮度規(guī)律性變化的圖案,然后經(jīng)物鏡投影在樣品上,調(diào)制光所產(chǎn)生的熒光信號再被相機接收。通過移動和旋轉(zhuǎn)照明圖案使其覆蓋樣本的各個區(qū)域,并將拍攝的多幅圖像用軟件進行組合和重建,就可以得到該樣品的超分辨率圖像了。由于需要組合多個圖像,SIM 的成像過程是需要一定時間的,不過遠比STORM這樣的單分子定位超分辨顯微技術(shù)要快許多。

還有一種速度更快的SIM技術(shù)——iSIM(Instant SIM)。它的前身是多焦點SIM(multifocal SIM,mSIM)。mSIM結(jié)合了共聚焦和結(jié)構(gòu)光照明——不是用線,而是用多個稀疏的光點排列成圖案進行照明(圖2)。這些焦點由微透鏡形成,并與發(fā)射光路徑上的針孔相結(jié)合,達到光學切片的效果。微透鏡陣列可以對來自每個照明焦點圖像進行2倍的光學收縮,然后通過振鏡將帶有圖案的激發(fā)光投射到整個樣品上進行成像。Curd 等人在文章詳細說明了構(gòu)建iSIM系統(tǒng)的過程(Curd et al., 2015.)。

iSIM 不同于 mSIM 的地方在于,它可以通過微透鏡陣列和掃描振鏡直接組合多個位置的圖像,不需要通過軟件,從而大大提高了速度,并減少了相機噪聲的影響。與PALM/STORM 等技術(shù)相比,iSIM 的速度能提高100倍。與其它結(jié)構(gòu)光照明技術(shù)相比,iSIM 對樣品的穿透能力要高上10倍,并且具有比轉(zhuǎn)盤共聚焦更好的光學切片能力,這樣一來,后期反卷積處理的效果也非常好。

d4eb3540-fad6-11ec-ba43-dac502259ad0.jpg

圖3 產(chǎn)生多焦點激發(fā)的會聚微透鏡陣列。激發(fā)樣品后,用與微透鏡陣列匹配的針孔陣列抑制非焦平面的雜散光。借助于第二個微透鏡陣列,每個針孔發(fā)射的熒光可實現(xiàn)2倍收縮。振鏡用于光柵多焦激發(fā)和和收集多焦發(fā)射光,在每次曝光期間產(chǎn)生超分辨率圖像(為清晰起見,本圖僅顯示部分振鏡)。(York et al., 2013)

左:原始圖像。右:左圖的動畫示意。

SIM 的應(yīng)用

SIM 和 iSIM 可以將傳統(tǒng)光學顯微鏡的分辨率極限降低一半,更重要的是能夠?qū)罴毎M行超分辨成像。iSIM 能夠以高達 100Hz 的頻率采集圖像,并且具有更好的光學切片能力。這使得 iSIM 能夠在使用傳統(tǒng)熒光染料的同時,對生物結(jié)構(gòu)內(nèi)部進行3維時間序列的超分辨成像。從而讓研究人員可以突破光學分辨率極限,觀察細胞和組織內(nèi)微觀結(jié)構(gòu)的動態(tài)過程。

圖4將 iSIM 與其他活細胞成像技術(shù)(轉(zhuǎn)盤共聚焦,線掃描共聚焦)的分辨率進行了比較。這個樣品的挑戰(zhàn)是線粒體內(nèi)部空隙中沒有 Mcherry 表達,因此只有用 iSIM 才能實現(xiàn)超分辨(圖c中用白色箭頭所示)。

d50b9538-fad6-11ec-ba43-dac502259ad0.jpg

圖4 表達 TFAM-GFP(綠色)和 Tom20-mCherry(紫色)的MRL-TR轉(zhuǎn)化人肺成纖維活體細胞。圖a-c用iSIM拍攝,d-f用轉(zhuǎn)盤共聚焦拍攝,g-i用線掃描共聚焦顯微鏡拍攝。(York et al., 2013)

圖a, d, g所示為3 μm體素的最大強度投影(XY),高倍圖顯示的為白色箭頭指示區(qū)域在對應(yīng)時間點的圖像。

圖b, e, h: a, d, g高倍圖中白色矩形區(qū)域的高倍放大。Scalebars: 0.5μm

圖c, f, i: a, d, g中黃線指示的~270 nm切片的軸向(ZY)視圖。Scalebars: 1μm

內(nèi)質(zhì)網(wǎng)的運動和生長非常迅速,新的內(nèi)質(zhì)網(wǎng)小管的形成和生長發(fā)生在約100ms的時間尺度上,iSIM 能夠非常清楚地捕捉到內(nèi)質(zhì)網(wǎng)的生長過程(圖5)。

d52a1454-fad6-11ec-ba43-dac502259ad0.jpg

圖5 iSIM拍攝的內(nèi)質(zhì)網(wǎng)動力學圖像(100Hz)(Yorket al., 2013)

A:200個時間序列中的第一張圖像,顯示了在MRL-TR轉(zhuǎn)化人肺成纖維細胞內(nèi)GFP-Sec61A標記的內(nèi)質(zhì)網(wǎng)。Scalebar:10 μm

B:A中白色大矩形區(qū)域的放大圖像。白色箭頭指示內(nèi)質(zhì)網(wǎng)小管的生長,藍色指示內(nèi)質(zhì)網(wǎng)小管的重塑。Scalebar:5 μm

C:A中白色小矩形的放大圖像,140ms內(nèi)新的內(nèi)質(zhì)網(wǎng)小管形成過程。Scalebar:200 nm

使用iSIM,York等人還成功地對3日齡斑馬魚紅細胞的結(jié)構(gòu)進行了活體成像(圖6),避免了由于運動導致的圖像模糊。展示出了對活樣品生物結(jié)構(gòu)進行無創(chuàng)成像的能力。

d53d4a4c-fad6-11ec-ba43-dac502259ad0.jpg

圖6 上:100個2D圖像(2673ms)的最大強度投影。顯示3日齡斑馬魚胚胎腦部血細胞中GFP標記的微管。成像深度:20μm;運動方向:從左到右,清晰的細胞邊界顯示沒有由于運動導致的圖像模糊。Scalebar:10μm

下:上圖中紅色方框在特定時間的圖像。黃色箭頭:同一細胞末端的“尾巴”結(jié)構(gòu);黃色小箭頭:尾部的微管;紅色箭頭:細胞內(nèi)的微管。Scalebar:2μm。

適合 SIM 的科學相機

SIM 常用于進行高時間分辨率的活體超分辨成像,高速的 sCMOS相機是它們的最佳搭檔。另一方面,由于曝光時間短,SIM對相機采集信號的能力要求也比較高。

因此,背照式sCMOS相機是一個不錯的選擇,如Prime BSI,Prime BSI express,Prime 95B等。95%量子效率帶來的高靈敏度,再加上低讀出噪聲,可以在提高采集速度的同時保證圖片信噪比。另外,均勻的背景對SIM和iSIM這種靠結(jié)構(gòu)光照明來實現(xiàn)超分辨成像的技術(shù)來說也很重要。

審核編輯 :李倩


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Sim
    Sim
    +關(guān)注

    關(guān)注

    2

    文章

    251

    瀏覽量

    40482
  • 光學顯微技術(shù)
    +關(guān)注

    關(guān)注

    0

    文章

    31

    瀏覽量

    6237

原文標題:結(jié)構(gòu)光照明顯微成像(SIM)

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    VirtualLab Fusion應(yīng)用:用于高NA顯微成像的工程化PSF

    顯微成像技術(shù)在最近的幾十年中得到迅速發(fā)展。 PSF(點擴散函數(shù))通常不是像平面上的艾里斑。當對沿縱軸定向的偶極子源進行成像時,可以設(shè)計出一個甜甜圈形狀。 我們在VirtualLab F
    發(fā)表于 03-26 08:47

    VirutualLab Fusion應(yīng)用:結(jié)構(gòu)光照明顯微鏡系統(tǒng)

    摘要 與阿貝理論預(yù)測的分辨率相比,用于熒光樣品的結(jié)構(gòu)照明顯微鏡系統(tǒng)可以將顯微鏡系統(tǒng)的分辨率提高2倍。 VirutualLab Fusion提
    發(fā)表于 03-21 09:26

    ?景深3D檢測顯微技術(shù)解析

    技術(shù)的核心在于其能夠?qū)崿F(xiàn)比傳統(tǒng)顯微鏡更廣闊的景深范圍,同時保持高分辨率的成像能力,從而為用戶提供更為清晰和立體的微觀世界視圖。 景深3D檢
    發(fā)表于 02-25 10:51

    VirtualLab Fusion案例:單分子顯微鏡高NA成像系統(tǒng)的建模

    數(shù)值孔徑的反射顯微鏡系統(tǒng) 這個用例演示了如何使用VirtualLab Fusion的快速物理光學技術(shù)建模NA=0.99的高數(shù)值孔徑緊湊型反射顯微鏡系統(tǒng)。 高NA傅里葉顯微鏡的單分子
    發(fā)表于 01-16 09:52

    壓電納米運動技術(shù)在“超級顯微鏡”中的應(yīng)用

    和分析,為醫(yī)療、生物、材料和化學等領(lǐng)域的研究提供更加先進和高效的實驗儀器。 隨著對顯微成像技術(shù)的深入探索,介觀活體顯微儀器問世,這種顯微儀器
    的頭像 發(fā)表于 01-02 10:06 ?363次閱讀
    壓電納米運動<b class='flag-5'>技術(shù)</b>在“超級<b class='flag-5'>顯微</b>鏡”中的應(yīng)用

    使用EM-CCD和qCMOS?相機ORCA? -Quest進行單分子顯微成像的比較

    使用 EM-CCD 和 qCMOS ?相機 ORCA ? -Quest進行單分子顯微成像的比較細胞單分子熒光成像方法在生命科學研究的各個領(lǐng)
    的頭像 發(fā)表于 12-27 06:23 ?348次閱讀
    使用EM-CCD和qCMOS?相機ORCA? -Quest進行單分子<b class='flag-5'>顯微</b><b class='flag-5'>成像</b>的比較

    新型分辨顯微成像技術(shù):突破光學衍射極限

    imaging of fast morphological dynamics of neurons in behaving animals》的研究論文。該團隊開發(fā)了新型分辨顯微成像
    的頭像 發(fā)表于 12-19 06:21 ?449次閱讀
    新型<b class='flag-5'>超</b><b class='flag-5'>分辨</b><b class='flag-5'>顯微</b><b class='flag-5'>成像</b><b class='flag-5'>技術(shù)</b>:突破光學衍射極限

    傅里葉光場顯微成像技術(shù)—2D顯微鏡實現(xiàn)3D成像

    的研究,即3D光場顯微成像技術(shù),隨著國內(nèi)外學者通過研究提出了各種光場顯微鏡的改進模型,將分辨率、放大倍數(shù)等重要參量進行了顯著優(yōu)化,大大擴展
    的頭像 發(fā)表于 10-31 08:05 ?700次閱讀
    傅里葉光場<b class='flag-5'>顯微</b><b class='flag-5'>成像</b><b class='flag-5'>技術(shù)</b>—2D<b class='flag-5'>顯微</b>鏡實現(xiàn)3D<b class='flag-5'>成像</b>

    共聚焦激光顯微鏡對比分辨顯微

    顯微技術(shù)的發(fā)展極大地推動了科學研究的進步,尤其是在細胞生物學和納米科學領(lǐng)域。共聚焦激光顯微鏡(CLSM)和
    的頭像 發(fā)表于 10-30 09:42 ?1274次閱讀

    共聚焦激光顯微鏡工作原理

    在生物醫(yī)學研究中,對細胞和組織的精確觀察至關(guān)重要。傳統(tǒng)的光學顯微鏡雖然能夠提供一定的分辨率,但在深度和對比度上存在局限。共聚焦激光顯微鏡的出現(xiàn),極大地提高了
    的頭像 發(fā)表于 10-30 09:27 ?1078次閱讀

    細胞的“聚光燈”——前沿細胞成像的案例分享

    細胞是一切生命的基本單位,構(gòu)成了各式各樣的生命體。因此研究細胞結(jié)構(gòu)以及內(nèi)部生命活動過程可以幫助我們更深入地探究生命的奧秘,了解生命體是如何構(gòu)建和運作的。傳統(tǒng)的細胞
    的頭像 發(fā)表于 10-24 08:04 ?682次閱讀
    <b class='flag-5'>活</b><b class='flag-5'>細胞</b>的“聚光燈”——前沿<b class='flag-5'>活</b><b class='flag-5'>細胞</b><b class='flag-5'>成像</b>的案例分享

    哈爾濱工業(yè)大學在分辨顯微成像技術(shù)領(lǐng)域取得突破性進展

    近日,哈爾濱工業(yè)大學儀器學院先進光電成像技術(shù)研究室(IPIC)李浩宇教授團隊在生物醫(yī)學分辨顯微成像
    的頭像 發(fā)表于 09-27 06:33 ?440次閱讀
    哈爾濱工業(yè)大學在<b class='flag-5'>超</b><b class='flag-5'>分辨</b><b class='flag-5'>顯微</b><b class='flag-5'>成像</b><b class='flag-5'>技術(shù)</b>領(lǐng)域取得突破性進展

    照明顯微鏡激光引擎

    ,就有損壞觀察對象的風險。該領(lǐng)域要求的精度只有特定于應(yīng)用的解決方案才能提供。 今天,我們推出了成套式顯微鏡激光引擎 Coherent CellX,從而增強了我們在生命科學激光系統(tǒng)領(lǐng)域的領(lǐng)導地位。 我們的經(jīng)過擴展的 CellX 平臺最初是為流式細胞術(shù)設(shè)計的,現(xiàn)在
    的頭像 發(fā)表于 06-24 06:30 ?474次閱讀
    <b class='flag-5'>照明顯微</b>鏡激光引擎

    共聚焦顯微鏡:成像原理、功能、分辨率與優(yōu)勢解析

    在材料科學和精密工程領(lǐng)域,對微觀結(jié)構(gòu)的精確測量和分析至關(guān)重要。共聚焦顯微鏡作為一種高精度的成像技術(shù),為這些領(lǐng)域提供了強大的工具。共聚焦顯微
    的頭像 發(fā)表于 06-14 09:28 ?2208次閱讀
    共聚焦<b class='flag-5'>顯微</b>鏡:<b class='flag-5'>成像</b>原理、功能、<b class='flag-5'>分辨</b>率與優(yōu)勢解析

    顯微成像與精密測量:共聚焦、光學顯微鏡與測量顯微鏡的區(qū)分

    共聚焦顯微鏡是一種光學顯微鏡,也可以被稱為測量顯微鏡。能夠進行二維和三維成像,是光學顯微技術(shù)
    的頭像 發(fā)表于 05-11 11:38 ?1195次閱讀
    <b class='flag-5'>顯微</b><b class='flag-5'>成像</b>與精密測量:共聚焦、光學<b class='flag-5'>顯微</b>鏡與測量<b class='flag-5'>顯微</b>鏡的區(qū)分