一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

前沿高端技術(shù)之遞歸神經(jīng)網(wǎng)絡(luò)(RNN)

恬靜簡(jiǎn)樸1 ? 來(lái)源:恬靜簡(jiǎn)樸1 ? 作者:恬靜簡(jiǎn)樸1 ? 2022-07-20 10:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

遞歸神經(jīng)網(wǎng)絡(luò)(RNN)

RNN是最強(qiáng)大的模型之一,它使我們能夠開(kāi)發(fā)如分類(lèi)、序列數(shù)據(jù)標(biāo)注、生成文本序列(例如預(yù)測(cè)下一輸入詞的SwiftKey keyboard應(yīng)用程序),以及將一個(gè)序列轉(zhuǎn)換為另一個(gè)序列(比如從法語(yǔ)翻譯成英語(yǔ)的語(yǔ)言翻譯)等應(yīng)用程序。大多數(shù)模型架構(gòu)(如前饋神經(jīng)網(wǎng)絡(luò))都沒(méi)有利用數(shù)據(jù)的序列特性。例如,我們需要數(shù)據(jù)呈現(xiàn)出向量中每個(gè)樣例的特征,如表示句子、段落或文檔的所有token。前饋網(wǎng)絡(luò)的設(shè)計(jì)只是為了一次性地查看所有特征并將它們映射到輸出。讓我們看一個(gè)文本示例,它顯示了為什么順序或序列特性對(duì)文本很重要。I had cleaned my car和I had my car cleaned兩個(gè)英文句子,用同樣的單詞,但只有考慮單詞的順序時(shí),它們才意味著不同的含義。

人類(lèi)通過(guò)從左到右閱讀詞序列來(lái)理解文本,并構(gòu)建了可以理解文本數(shù)據(jù)中所有不同內(nèi)容的強(qiáng)大模型。RNN的工作方式有些許類(lèi)似,每次只查看文本中的一個(gè)詞。RNN也是一種包含某特殊層的神經(jīng)網(wǎng)絡(luò),它并不是一次處理所有數(shù)據(jù)而是通過(guò)循環(huán)來(lái)處理數(shù)據(jù)。由于RNN可以按順序處理數(shù)據(jù),因此可以使用不同長(zhǎng)度的向量并生成不同長(zhǎng)度的輸出。圖6.3提供了一些不同的表示形式。

pYYBAGLXZaCAdvgGAAEUWD-FqNE532.png

圖6.3來(lái)自關(guān)于RNN一個(gè)著名博客(http://karpathy.github.io/2015/05/21/rnn-effectiveness),其中作者Andrej Karpathy寫(xiě)明了如何使用Python從頭開(kāi)始構(gòu)建RNN并將其用作序列生成器。

6.4.1通過(guò)示例了解RNN如何使用

假設(shè)我們已經(jīng)構(gòu)建了一個(gè)RNN模型,并且嘗試了解它提供的功能。當(dāng)了解了RNN的作用后,就可以來(lái)探討一下RNN內(nèi)部發(fā)生了什么。

讓我們用Thor的評(píng)論作為RNN模型的輸入。我們正在看的示例文本是the action scenes were top notch in this movie... .首先將第一個(gè)單詞the傳遞給模型;該模型生成了狀態(tài)向量和輸出向量?jī)煞N不同的向量。狀態(tài)向量在處理評(píng)論中的下一個(gè)單詞時(shí)傳遞給模型,并生成新的狀態(tài)向量。我們只考慮在最后一個(gè)序列中生成的模型的輸出。圖6.4概括了這個(gè)過(guò)程。

poYBAGLXZaCAHZoUAABUjeo1fNI802.png

圖6.4演示了以下內(nèi)容:

· RNN如何通過(guò)展開(kāi)和圖像來(lái)工作;

· 狀態(tài)如何以遞歸方式傳遞給同一模型。

到現(xiàn)在為止,我們只是了解了RNN的功能,但并不知道它是如何工作的。在了解其工作原理之前來(lái)看一些代碼片段,它會(huì)更詳細(xì)地展示我們學(xué)到的東西。仍然將RNN視為黑盒:

在上述代碼中,hidden變量表示狀態(tài)向量,有時(shí)也稱為隱藏狀態(tài)。到現(xiàn)在為止,我們應(yīng)該知道了如何使用RNN。現(xiàn)在來(lái)看一下實(shí)現(xiàn)RNN的代碼,并了解RNN內(nèi)部發(fā)生的情況。以下代碼包含RNN類(lèi):

除了上述代碼中的單詞RNN之外,其他一切聽(tīng)起來(lái)與在前面章節(jié)中使用的非常類(lèi)似,因?yàn)镻yTorch隱藏了很多反向傳播的復(fù)雜度。讓我們通過(guò)init函數(shù)和forward函數(shù)來(lái)了解發(fā)生了什么。

__init__函數(shù)初始化了兩個(gè)線性層,一個(gè)用于計(jì)算輸出,另一個(gè)用于計(jì)算狀態(tài)或隱藏向量。

forward函數(shù)將input向量和hidden向量組合在一起,并將其傳入兩個(gè)線性層,從而生成輸出向量和隱藏狀態(tài)。對(duì)于output層,我們應(yīng)用log_softmax函數(shù)。

initHidden函數(shù)有助于創(chuàng)建隱藏向量,而無(wú)需在第一次時(shí)聲明調(diào)用RNN。讓我們通過(guò)圖6.5了解RNN類(lèi)的作用。

pYYBAGLXZaCAG_4oAABGtsqyyso002.png

圖6.5說(shuō)明了RNN的工作原理。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1203次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)的常見(jiàn)調(diào)參技巧

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,簡(jiǎn)稱RNN)是一種用于處理序列數(shù)據(jù)的深度學(xué)習(xí)模型,它能夠捕捉時(shí)間序列中的動(dòng)態(tài)特征。然而,RNN的訓(xùn)練往往比傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 10:13 ?759次閱讀

    RNN與LSTM模型的比較分析

    RNN 基本原理 :RNN通過(guò)引入循環(huán)連接,使網(wǎng)絡(luò)能夠捕捉序列數(shù)據(jù)中的時(shí)間依賴性。每個(gè)時(shí)間步的輸入都會(huì)通過(guò)一個(gè)循環(huán)結(jié)構(gòu)傳遞到下一個(gè)時(shí)間步,使得網(wǎng)絡(luò)能夠保持對(duì)之前信息的記憶。 結(jié)構(gòu) :
    的頭像 發(fā)表于 11-15 10:05 ?2227次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)的優(yōu)化技巧

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,簡(jiǎn)稱RNN)是一種用于處理序列數(shù)據(jù)的深度學(xué)習(xí)模型,它能夠捕捉時(shí)間序列中的動(dòng)態(tài)特征。然而,RNN在訓(xùn)練過(guò)程中可能會(huì)遇到梯度消失或梯度
    的頭像 發(fā)表于 11-15 09:51 ?765次閱讀

    RNN的基本原理與實(shí)現(xiàn)

    RNN的基本原理 RNN的基本原理在于其隱藏層之間的循環(huán)連接,這使得網(wǎng)絡(luò)能夠捕捉序列數(shù)據(jù)中的動(dòng)態(tài)行為和時(shí)間依賴性。RNN的核心是一個(gè)遞歸
    的頭像 發(fā)表于 11-15 09:49 ?1451次閱讀

    如何使用RNN進(jìn)行時(shí)間序列預(yù)測(cè)

    時(shí)間序列預(yù)測(cè)在金融、氣象、銷(xiāo)售預(yù)測(cè)等領(lǐng)域有著廣泛的應(yīng)用。傳統(tǒng)的時(shí)間序列分析方法,如ARIMA和指數(shù)平滑,雖然在某些情況下表現(xiàn)良好,但在處理非線性和復(fù)雜模式時(shí)可能不夠靈活。遞歸神經(jīng)網(wǎng)絡(luò)RNN)提供了
    的頭像 發(fā)表于 11-15 09:45 ?920次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類(lèi)型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)RNN
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與其他機(jī)器學(xué)習(xí)算法的比較

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器學(xué)習(xí)算法在各個(gè)領(lǐng)域中扮演著越來(lái)越重要的角色。長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)RNN),因其在處理序列數(shù)據(jù)方面的優(yōu)勢(shì)而受到廣泛關(guān)注。
    的頭像 發(fā)表于 11-13 10:17 ?2144次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問(wèn)題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中的應(yīng)用實(shí)例

    語(yǔ)音識(shí)別技術(shù)是人工智能領(lǐng)域的一個(gè)重要分支,它使計(jì)算機(jī)能夠理解和處理人類(lèi)語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)的引入,語(yǔ)音識(shí)別的準(zhǔn)確性和效率得到了顯著提升。 LSTM
    的頭像 發(fā)表于 11-13 10:03 ?1853次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長(zhǎng)序列時(shí)存在梯度消失或梯度爆炸的問(wèn)題。為了解決這一問(wèn)題,LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)
    的頭像 發(fā)表于 11-13 09:58 ?1217次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時(shí)間序列預(yù)測(cè)中的應(yīng)用

    時(shí)間序列預(yù)測(cè)是數(shù)據(jù)分析中的一個(gè)重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測(cè)未來(lái)值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理序列數(shù)據(jù)方面的優(yōu)勢(shì)而受到廣泛關(guān)注。 LSTM神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
    的頭像 發(fā)表于 11-13 09:54 ?2053次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)RNN),它能夠?qū)W習(xí)長(zhǎng)期依賴信息。在處理序列數(shù)據(jù)時(shí),如時(shí)間序列分析、自然語(yǔ)言處理等,LSTM因其能夠有效地捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀