一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模型的閉集準(zhǔn)確率與開集識別能力正相關(guān)的觀點(diǎn)

倩倩 ? 來源:GiantPandaCV ? 作者:GiantPandaCV ? 2022-09-09 09:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

參考一篇綜述,首先介紹兩個概念:

Close Set Recognition,閉集識別:指 訓(xùn)練集中的類別和測試集中的類別是一致的,例如最常用最經(jīng)典的ImageNet-1k。所有在測試集中的圖像的類別都在訓(xùn)練集中出現(xiàn)過,沒有未知種類的圖像。從AlexNet到VGG,再到ResNet,以及最近大火的Visual Transformer,都能夠比較好的處理這一類別的任務(wù)。

Open Set Recognition,開集識別:指對一個在訓(xùn)練集上訓(xùn)練好的模型,當(dāng)利用一個測試集(該測試集的中包含訓(xùn)練集中沒有的類別)進(jìn)行測試時,如果輸入已知類別數(shù)據(jù),輸出具體的類別,如果輸入的是未知類別的數(shù)據(jù),則進(jìn)行合適的處理(識別為unknown或者out-of-distribution)。例如在利用一個數(shù)據(jù)集訓(xùn)練好了一個模型可以對狗和人進(jìn)行分類,而輸入一張狗的圖像,由于softmax這種方式的設(shè)定,模型可能會告訴你80%的概率為人,但顯然這是不合理的,限制了模型泛化性能提升。而我們想要的結(jié)果,是當(dāng)輸入不為貓和人的圖像(比如狗)時,模型輸出為未知類別,輸入人或貓圖像,模型輸出對應(yīng)具體的類別。

3ab9d0de-2fde-11ed-ba43-dac502259ad0.png

由于現(xiàn)實(shí)場景中更多的是開放和非靜態(tài)的環(huán)境,所以在模型部署中,經(jīng)常會出現(xiàn)一些沒有見過的情況,所以這種考慮開集檢測的因素,對模型的部署十分有必要。那么模型在Close set和在Open set的表現(xiàn)是否存在一定的相關(guān)性呢?下面我們來了解一份ICLR 2021的工作來嘗試?yán)斫夂吞剿鲀烧咧g的關(guān)系。

在本文中,作者重新評估一些open set識別的方法,通過探索是否訓(xùn)練良好的閉集的分類器通過分析baseline的數(shù)據(jù)集,可以像最近的算法一樣執(zhí)行。要做到這一點(diǎn),我們首先研究了分類器的閉集和開集性能之間的關(guān)系。

雖然人們可能期望更強(qiáng)的close set分類器過度擬合到train set出現(xiàn)的類別,因此在OSR中表現(xiàn)較差。其實(shí)最簡單的方法也非常直觀,就是‘maximum softmax probability (MSP) baseline,即經(jīng)過softmax輸出的最大的概率值。而該論文展示了在close set和open set上開放集的表現(xiàn)是高度相關(guān)的,這一點(diǎn)是非常關(guān)鍵的。而且展這種趨勢在不同的數(shù)據(jù)集、目標(biāo)以及模型架構(gòu)中都是成立的。并在ImageNet-1k這個量級上的數(shù)據(jù)集進(jìn)行評估,更能說明該方法的有效性。

但僅僅觀察到這種現(xiàn)象,這種contribution雖然有意義,但可能也不足以支撐一篇頂會oral,所以自然要基于這一現(xiàn)象展開一些方法上的設(shè)計(jì),來提升開集檢測的表現(xiàn)。根據(jù)這一觀察,論文提出一種通過改善close set性能的方式來進(jìn)一步提升open set上的表現(xiàn)。

具體來說,我們引入了更多的增強(qiáng)、更好的學(xué)習(xí)率調(diào)度和標(biāo)簽平滑等策略,這些策略顯著提高了MSP基線的close set和open set性能。我們還建議使用maximum logit score(MLS),而不是MSP來作為開放集指標(biāo)。通過這些調(diào)整,可以在不改變模型結(jié)構(gòu)的情況下,非常有效的提升模型open set狀態(tài)下的識別性能。

3. 方法

3c2742e4-2fde-11ed-ba43-dac502259ad0.png

首先就是一張非常直觀的圖,在不用的數(shù)據(jù)集上,對OSR和CSR兩個任務(wù)的表現(xiàn)進(jìn)行比較。論文首先利用標(biāo)準(zhǔn)基準(zhǔn)數(shù)據(jù)集上,選取三種有代表性的開放集識別方法,包括MSP,ARPL以及ARPL+CS。然后利用一個類似于VGG形態(tài)的的輕量級模型,在不同的分類數(shù)據(jù)集上進(jìn)行檢測??梢钥吹絆SR和CSR兩個任務(wù)的表現(xiàn)是呈現(xiàn)出高度的正相關(guān)的。

對于理論上的證明,論文選取了模型校準(zhǔn)的角度來解讀。直觀地說,模型校準(zhǔn)的目的是量化模型是否具有感知對象類別的能力,即是否可以把低置信度的預(yù)測與高錯誤率相關(guān)聯(lián)。也就是說如果給了很低的置信度,而錯誤率又是很高的,那么就可以定義為模型沒有被很好地校準(zhǔn)。反之,則說明模型被很好地校準(zhǔn)了。

3c5c5092-2fde-11ed-ba43-dac502259ad0.png

3c811c10-2fde-11ed-ba43-dac502259ad0.png

到目前為止,論文已經(jīng)證明了在單一、輕量級架構(gòu)和小規(guī)模數(shù)據(jù)集上封閉集和開放集性能之間的相關(guān)性——盡管我們強(qiáng)調(diào)它們是OSR文獻(xiàn)中現(xiàn)有的標(biāo)準(zhǔn)基準(zhǔn)。如上圖,論文又在在大規(guī)模數(shù)據(jù)集(ImageNet-1k)上試驗(yàn)了一系列架構(gòu)。和在CIFAR-10等小數(shù)據(jù)集一致,該數(shù)據(jù)集也存在上述的現(xiàn)象。

至于,獲得更好的open set recognition上的表現(xiàn),也就非常直接了。就是通過各種優(yōu)化方式、訓(xùn)練策略的設(shè)計(jì),讓模型可以能夠在close set上具有更好的性能。完整的細(xì)節(jié)和用于提高封閉集性能的方法的表格明細(xì)可以在論文,以及附錄中更好地了解。

論文還提出一種新的評估close set性能的方式。以前的工作指出,開放集的例子往往比封閉集的例子具有更低的norm。因此,我們建議在開放集評分規(guī)則中使用最大對數(shù),而不是softmax概率。Logits是深度分類器中最后一個線性層的原始輸出,而softmax操作涉及到一個歸一化,從而使輸出可以被解釋為一個概率向量的和為1。由于softmax操作將logits中存在的大部分特征幅度信息歸一化,作者發(fā)現(xiàn)logits能帶來更好的開放集檢測結(jié)果。

3cae29b2-2fde-11ed-ba43-dac502259ad0.png

這種新的方式,改善了在所有數(shù)據(jù)集上的性能,并大大縮小了與最先進(jìn)方法的差距,各數(shù)據(jù)集的AUROC平均絕對值增加了13.9%。如果以報告的baseline和當(dāng)前最先進(jìn)的方法之間的差異比例來計(jì)算,這意味著平均差異減少了87.2%。MLS方法還在TinyImageNet上取得了新的領(lǐng)先優(yōu)勢,比OpenHybrid高出3.3%。

另外,作者指出,目前的標(biāo)準(zhǔn)OSRbaseline評價方式有兩個缺點(diǎn):

它們都只涉及小規(guī)模的數(shù)據(jù)集;

它們?nèi)狈?gòu)成 "語義類 "的明確定義。

后者對于將開放集領(lǐng)域與其他研究問題,如out-of-distribution以及outlier的檢測,進(jìn)行區(qū)分非常重要。OSR旨在識別測試圖像是否與訓(xùn)練類有語義上的不同,而不是諸如模型對其預(yù)測不確定或是否出現(xiàn)了低層次的distribution shift。所以作者基于這兩個缺點(diǎn),提出來了新的baseline用于評估open set的性能。具體關(guān)于數(shù)據(jù)集的細(xì)節(jié),可以參考原文

4. 結(jié)論

在這篇文章中,作者給出了模型的閉集準(zhǔn)確率與開集識別能力正相關(guān)的觀點(diǎn),同時通過實(shí)驗(yàn)驗(yàn)證了加強(qiáng)模型的閉集性能能夠幫助我們獲得更強(qiáng)的開集能力。對于 Open-Set Recognition 具有啟發(fā)意義。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)
    +關(guān)注

    關(guān)注

    8

    文章

    7256

    瀏覽量

    91922
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3521

    瀏覽量

    50445
  • 分類器
    +關(guān)注

    關(guān)注

    0

    文章

    153

    瀏覽量

    13452

原文標(biāo)題:開集識別: A Good Closed-Set Classifier is All You Need

文章出處:【微信號:GiantPandaCV,微信公眾號:GiantPandaCV】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    【Sipeed MaixCAM Pro開發(fā)板試用體驗(yàn)】+ 02 + 基礎(chǔ)功能測試

    、基礎(chǔ)功能測試 1.人臉表情情緒檢測 通過開發(fā)板自帶的應(yīng)用程序?qū)崪y發(fā)現(xiàn)識別準(zhǔn)確率非常的高(但需在離人臉較近的地方進(jìn)行識別,如果識別距離過遠(yuǎn)會導(dǎo)致
    發(fā)表于 07-19 22:50

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    模型,將模型轉(zhuǎn)化為嵌入式AI模型模型升級AI攝像機(jī),進(jìn)行AI識別應(yīng)用。 AI訓(xùn)練模型是不斷迭
    發(fā)表于 04-28 11:11

    【幸狐Omni3576邊緣計(jì)算套件試用體驗(yàn)】人臉識別

    標(biāo)定位置準(zhǔn)確。 多張人臉同時識別 在單張人臉識別的基礎(chǔ)上,嘗試多張人臉同時識別的情況。 將目標(biāo)圖片上傳至板端并運(yùn)行程序,終端輸出推理識別結(jié)果
    發(fā)表于 04-01 21:46

    請問NanoEdge AI數(shù)據(jù)該如何構(gòu)建?

    我想用NanoEdge來識別異常的聲音,但我目前沒有辦法生成模型,我感覺可能是數(shù)據(jù)的問題,請問我該怎么構(gòu)建數(shù)據(jù)?或者生成模型失敗還會有哪
    發(fā)表于 03-10 08:20

    是否可以輸入隨機(jī)數(shù)據(jù)來生成INT8訓(xùn)練后量化模型?

    無法確定是否可以輸入隨機(jī)數(shù)據(jù)來生成 INT8 訓(xùn)練后量化模型。
    發(fā)表于 03-06 06:45

    浪潮信息:元腦EPAI已接入DeepSeek,大幅提升DeepSeek企業(yè)應(yīng)用準(zhǔn)確率

    結(jié)合,深度開發(fā)模型潛力,快速實(shí)現(xiàn)本地化部署DeepSeek,構(gòu)建準(zhǔn)確率高、安全穩(wěn)定的專屬智能應(yīng)用。實(shí)測數(shù)據(jù)顯示,DeepSeek在元腦企智EPAI上開發(fā)的企業(yè)應(yīng)用回答準(zhǔn)確率達(dá)到95%。 ? 企業(yè)落地
    的頭像 發(fā)表于 02-23 07:32 ?606次閱讀
    浪潮信息:元腦EPAI已接入DeepSeek,大幅提升DeepSeek企業(yè)應(yīng)用<b class='flag-5'>準(zhǔn)確率</b>

    Meta非入侵式腦機(jī)技術(shù):AI讀取大腦信號打字準(zhǔn)確率80%

    腦機(jī)技術(shù)主要通過AI模型與特定硬件的結(jié)合,將用戶的大腦信號映射成具體的鍵盤字符。該技術(shù)的準(zhǔn)確率高達(dá)約80%,能夠準(zhǔn)確判斷用戶在“敲擊”的按鍵,從而實(shí)現(xiàn)文字輸入。 值得注意的是,這項(xiàng)設(shè)備完全依靠外部腦機(jī)讀取用戶的大腦信號,無需進(jìn)行
    的頭像 發(fā)表于 02-11 15:45 ?672次閱讀

    請問AFE4400 SPO2精度和準(zhǔn)確率如何?

    請問用TI 的AFE4400 EVM 測量SPO2 的值,有沒有詳細(xì)的說明其測量的準(zhǔn)確率和精度,抗弱灌注等。謝謝! 比如如下類似: SpO2 測量范圍 0~100% 分辨 1% 精度 70~100%, 2%
    發(fā)表于 01-15 07:02

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗(yàn)】+大模型微調(diào)技術(shù)解讀

    同時優(yōu)化多個相關(guān)任務(wù)的損失函數(shù)來提升模型的泛化能力。學(xué)習(xí)調(diào)整策略:合理的學(xué)習(xí)調(diào)整可以加速模型
    發(fā)表于 01-14 16:51

    如何提升人臉門禁一體機(jī)的識別準(zhǔn)確率?

    準(zhǔn)確率,可以從以下幾個方面進(jìn)行改進(jìn)。一、優(yōu)化算法與模型人臉識別的核心在于算法的優(yōu)化和模型的調(diào)整,目前深度學(xué)習(xí)技術(shù)在圖像識別中的應(yīng)用取得了顯著
    的頭像 發(fā)表于 12-10 15:05 ?1011次閱讀
    如何提升人臉門禁一體機(jī)的<b class='flag-5'>識別</b><b class='flag-5'>準(zhǔn)確率</b>?

    微機(jī)保護(hù)裝置預(yù)警功能的準(zhǔn)確率

    異常狀態(tài)。 微機(jī)保護(hù)裝置的預(yù)警功能準(zhǔn)確率是衡量其性能的重要指標(biāo),它直接關(guān)系到裝置能否及時準(zhǔn)確地檢測潛在的故障或異常情況,從而預(yù)防事故的發(fā)生。 準(zhǔn)確率影響因素: 1.硬件性能:高精度的傳感器和強(qiáng)大的數(shù)據(jù)處理單元直
    的頭像 發(fā)表于 11-03 16:10 ?549次閱讀

    ai人工智能回答準(zhǔn)確率高嗎

    ,AI可能表現(xiàn)出較高的準(zhǔn)確率。例如,在圖像識別、語音識別等領(lǐng)域,經(jīng)過大量訓(xùn)練的AI系統(tǒng)通常能夠取得令人滿意的準(zhǔn)確率。 然而,在其他領(lǐng)域或場景下,AI的
    的頭像 發(fā)表于 10-17 16:30 ?7221次閱讀

    RISC-V和arm指令的對比分析

    和使用。 ARM :ARM架構(gòu)是一種源的商業(yè)指令架構(gòu),ARM公司對其指令架構(gòu)的定義和使用有一些限制。ARM架構(gòu)的授權(quán)需要付費(fèi),只有獲得授權(quán)的廠商才能設(shè)計(jì)、制造和銷售ARM處理器。這種
    發(fā)表于 09-28 11:05

    NIUSB6009 采集準(zhǔn)確率的問題?

    NIUSB6009 采集準(zhǔn)確率的問題? 一、本人做一個中間繼電器電性能實(shí)驗(yàn)的裝置 1、PLC帶動中間繼電器吸合和釋放,(吸合用時1.5秒,釋放用時1.5秒)周而復(fù)始的運(yùn)動。 2、中間繼電器的觸頭負(fù)載
    發(fā)表于 09-23 15:59

    西井科技成功入選《2024大模型典型示范應(yīng)用案例

    在2024世界人工智能大會“大模型煥新與產(chǎn)業(yè)賦能”論壇上,中國信通院華東分院、上海人工智能實(shí)驗(yàn)室及相關(guān)代表企業(yè)聯(lián)合發(fā)布了《2024大模型典型示范應(yīng)用案例》,旨在展現(xiàn)具有先進(jìn)性、引領(lǐng)性
    的頭像 發(fā)表于 08-13 10:38 ?1356次閱讀
    西井科技成功入選《2024大<b class='flag-5'>模型</b>典型示范應(yīng)用案例<b class='flag-5'>集</b>》