一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌多模態(tài)大模型PaLI研究神經(jīng)網(wǎng)絡(luò)

3D視覺工坊 ? 來源:機器之心 ? 作者:Xi Chen ? 2022-10-09 14:18 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者丨Xi Chen等

來源丨機器之心

編輯丨張倩

語言和視覺任務(wù)的建模中,更大的神經(jīng)網(wǎng)絡(luò)模型能獲得更好的結(jié)果,幾乎已經(jīng)是共識。在語言方面,T5、GPT-3、Megatron-Turing、GLAM、Chinchilla 和 PaLM 等模型顯示出了在大文本數(shù)據(jù)上訓練大型 transformer 的明顯優(yōu)勢。視覺方面,CNN、視覺 transformer 和其他模型都從大模型中取得了很好的結(jié)果。language-and-vision 建模也是類似的情況,如 SimVLM、Florence、CoCa、GIT、BEiT 和 Flamingo。

在這篇論文中,來自谷歌的研究者通過一個名為 PaLI (Pathways Language and Image)的模型來延續(xù)這一方向的研究。

PaLI 使用單獨 “Image-and-text to text” 接口執(zhí)行很多圖像、語言以及 “圖像 + 語言” 任務(wù)。PaLI 的關(guān)鍵結(jié)構(gòu)之一是重復(fù)使用大型單模態(tài) backbone 進行語言和視覺建模,以遷移現(xiàn)有能力并降低訓練成本。

在語言方面,作者復(fù)用有 13B 參數(shù)的 mT5-XXL。mT5-XXL 已經(jīng)把語言理解和泛化能力一體打包。作者通過實驗證明這些功能可以維護并擴展到多模態(tài)情況。

在視覺方面,除復(fù)用 2B 參數(shù) ViT-G 模型外,作者還訓練了擁有 4B 參數(shù)的模型 ViT-e(“enormous”)。ViT-e 在圖像任務(wù)上表現(xiàn)出很好的性能(ImageNet 上準確率達到 90.9%;ObjectNet 準確率達到 84.9%)。

作者發(fā)現(xiàn)了聯(lián)合 scaling 視覺和語言組件的好處,視覺提供了更好的投入回報(每個參數(shù) / FLOP 帶來的準確度提升)。實驗結(jié)果表明,最大的 PaLI 模型——PaLI-17B 在兩種任務(wù)模式下表現(xiàn)相對平衡,ViT-e 模型約占總參數(shù)的 25%。而先前的大規(guī)模視覺和語言建模工作,情況并非總是如此(Wang 等人,2022a;Alayrac 等人,2022),因為視覺和語言 backbone 之間的先驗量表并不匹配。

作者通過將多個圖像和 (或) 語言任務(wù)轉(zhuǎn)換為廣義的類似 VQA 的任務(wù),實現(xiàn)它們之間的知識共享。使用 “image+query to answer” 來構(gòu)建所有任務(wù),其中檢索和回答都表示為文本標記。這使得 PaLI 能夠使用跨任務(wù)的遷移學習,并在廣泛的視覺和語言問題中增強 language-and-image 理解能力:圖像描述、視覺問答、場景文本理解等(如圖 1 所示)。

為了訓練 PaLI-17B,作者構(gòu)建了全新的大容量 image-and-language 數(shù)據(jù)集 WebLI,包含 10B 的圖文對數(shù)據(jù),WebLI 數(shù)據(jù)集包含 100 多種語言的文本。通過訓練模型用多種語言執(zhí)行多模態(tài)任務(wù),這大大增加了任務(wù)的多樣性,并測試了模型在跨任務(wù)和跨語言之間有效擴展的能力。作者也提供了數(shù)據(jù)卡來介紹有關(guān) WebLI 及其構(gòu)造的信息。

PaLI-17B 在多個 benchmark 上都達到了 SOTA,表現(xiàn)優(yōu)于某些強大的模型(見表 1)。

具體來說,PaLI 在 COCO 數(shù)據(jù)集 benchmark 上的表現(xiàn)優(yōu)于多數(shù)新舊模型,在 Karpaty 分割上的得分為 149.1。PaLI 在 VQAv2 上使用類似 Flamingo 的開放詞匯文本生成的設(shè)置達到 84.3% 的最新 SOTA,該結(jié)果甚至優(yōu)于在固定詞匯分類環(huán)境中評估的模型,例如 CoCa、SimVLM、BEiT-3。作者的工作為未來的多模態(tài)模型提供了 scaling 路線圖。Model scaling 對于多語言環(huán)境中的語言圖像理解特別重要。作者的結(jié)果支持這樣一個結(jié)論:與其他替代方案相比,scaling 每個模式的組件會產(chǎn)生更好的性能。

這篇文章在知乎上引發(fā)了一些討論。有人感嘆說,「剛要匯報 beit3,隨便一刷知乎,又被超了」(引自知乎用戶 @走遍山水路)。還有人認為,論震撼程度,PaLI 比不上 BEiT-3,「畢竟 model scaling 這事大家已經(jīng)比較麻了」。但「谷歌把這個大家伙做出來了,還達到了一系列新 SOTA,并且零樣本都已經(jīng)做得很突出,還是非常令人敬佩」(引自知乎用戶 @霜清老人)。

以下是論文細節(jié)。

模型架構(gòu)

作者使用 PaLI 的目的是執(zhí)行單模態(tài)(語言、視覺)和多模態(tài)(語言和視覺)任務(wù)。這些任務(wù)中的許多任務(wù)最好由不同的模型處理。如圖像分類及許多 VQA 需要從固定集合中預(yù)測元素,而 language-only 任務(wù)和圖像描述需要開放詞匯文本生成。作者通過使用所有任務(wù)所需的通用接口來解決該問題:模型接受圖像和文本字符串作為輸入,并生成文本作為輸出。在預(yù)訓練和微調(diào)時使用相同的接口。由于所有任務(wù)都使用相同的模型執(zhí)行,即沒有任務(wù)特定的參數(shù),因此使用基于文本的提示指導模型需要執(zhí)行的任務(wù)。

圖 2 展示了模型架構(gòu)的高階示意圖。其核心是一個文本 encoder-decoder transformer。為了將視覺作為輸入,向文本編碼器提供視覺“tokens”:視覺 transformer 將圖像作為輸入,并輸出相關(guān)特征。通過交叉注意力將視覺 token 傳遞到 encoder-decoder 模型之前,不會將池化應(yīng)用于視覺 transformer 的輸出。

作者重復(fù)使用之前訓練過的單模態(tài)模型。對于文本 encoder-decoder,重復(fù)使用預(yù)訓練的 mT5(Xue 等,2021)模型,而對于圖像編碼,則重復(fù)使用大型 vanilla ViT 模型(Dosovitskiy 等,2021; Zhai 等,20222a)。

實驗結(jié)果

作者在三個純英文圖像的 benchmark 上評估了 PaLI 模型的變體,結(jié)果如表 4 所示。

作者對四個僅英文視覺問答(VQA)benchmark 進行評估,結(jié)果見表 6。

作者將 mT5-XXL 和 PaLI-17B 在一系列語言理解任務(wù) benchmark 進行比較,對比結(jié)果如表 8 所示。

作者使用 224x224 分辨率(在高分辨率預(yù)微調(diào)之前)對 PaLI 模型在 Imagenet 和 Imagenet OOD 數(shù)據(jù)集上進行評估,評估結(jié)果如表 9 所示。

審核編輯:郭婷


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6231

    瀏覽量

    108075
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103510
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3132

    瀏覽量

    4050

原文標題:谷歌多模態(tài)大模型PaLI:采用參數(shù)量為4B的ViT-e,效果超過BEiT-3

文章出處:【微信號:3D視覺工坊,微信公眾號:3D視覺工坊】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究

    ,在一定程度上擴展了轉(zhuǎn)速估計范圍。 純分享帖,需要者可點擊附件免費獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究.pdf【免責聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?648次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學習率是提高模型訓練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可
    的頭像 發(fā)表于 02-12 15:51 ?919次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?906次閱讀

    如何訓練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?896次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時
    的頭像 發(fā)表于 01-09 10:24 ?1177次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構(gòu)建和訓練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點: 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?664次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型
    的頭像 發(fā)表于 11-15 14:53 ?1850次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1122次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能化實驗的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?659次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡(luò)算法中,模型的訓練離不開大量的數(shù)據(jù)集,數(shù)據(jù)
    發(fā)表于 10-10 09:28

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

    U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學計算機科學系的研究人員在2015年提出,專為生物醫(yī)學圖像
    的頭像 發(fā)表于 07-24 10:59 ?5512次閱讀

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-19 17:19 ?1548次閱讀