一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

高光譜遙感在農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)中的應(yīng)用

萊森光學(xué) ? 來源:萊森光學(xué) ? 作者:萊森光學(xué) ? 2022-11-01 14:22 ? 次閱讀

0引言

衛(wèi)星遙感技術(shù)目前已被廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中,如土壤普查(包括土地覆蓋和土地利用)、農(nóng)業(yè)資源調(diào)查、氣象災(zāi)害監(jiān)測(cè)以及農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)和農(nóng)作物估產(chǎn)。農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)指利用衛(wèi)星資料對(duì)作物苗情、生長(zhǎng)狀況及變化的宏觀大面積監(jiān)測(cè)。隨著作物的生長(zhǎng)發(fā)育,作物葉面積指數(shù)由小而大變化,葉片顏色亦發(fā)生變化,并引起反射率發(fā)生變化,另外不同的水分含量,作物長(zhǎng)勢(shì)好壞,亦能導(dǎo)致反射率的改變。遙感監(jiān)測(cè)作物長(zhǎng)勢(shì),就是根據(jù)作物歷,在作物生長(zhǎng)期內(nèi),通過分析光譜值或植被指數(shù)的大小,分析評(píng)價(jià)作物長(zhǎng)勢(shì)好壞。

人們同時(shí)也發(fā)現(xiàn),傳統(tǒng)的寬波段遙感(MSS,TM)在對(duì)作物長(zhǎng)勢(shì)監(jiān)測(cè)時(shí),由于其波段少、光譜分辨率低,很難反映出自然界各種植被所固有的光譜特性及其差異,容易受外部條件(如植被覆蓋率、葉子顏色和土壤顏色等)影響,因而監(jiān)測(cè)的可靠性受到一定限制。由于高光譜遙感其高光譜分辨率和超多波段的成像光譜數(shù)據(jù)能解決常規(guī)遙感中出現(xiàn)的問題,而且采用高光譜遙感導(dǎo)數(shù)光譜技術(shù)可以解決遙感數(shù)據(jù)容易受外部條件影響的問題,因而可以更有效地監(jiān)測(cè)農(nóng)作物的長(zhǎng)勢(shì)。

1材料與方法

該研究是在加拿大Saskatchewan省ScottAAFC(加拿大農(nóng)業(yè)與食品部)ACS(加拿大薩省農(nóng)業(yè)試驗(yàn)區(qū))實(shí)驗(yàn)田里進(jìn)行的。實(shí)驗(yàn)區(qū)分為4個(gè)完全相同的實(shí)驗(yàn)小區(qū),每個(gè)小區(qū)根據(jù)3種投入水平分為3小塊,每小塊又由3種作物多樣性水平組成,每6a循環(huán)一次(見圖1)。收集了前兩個(gè)實(shí)驗(yàn)區(qū)2003年生長(zhǎng)季前期(6月13日)、生長(zhǎng)季旺盛期(7月18日)、生長(zhǎng)季后期(8月11日)3個(gè)生長(zhǎng)季的葉面積指數(shù)和遙感數(shù)據(jù)。葉面積指數(shù)是由植物冠層分析儀測(cè)量的,遙感數(shù)據(jù)是由便攜式高光譜儀完成的。并在每次收集數(shù)據(jù)時(shí)對(duì)試驗(yàn)區(qū)拍攝數(shù)碼照片。光譜數(shù)據(jù)是取5次測(cè)量的平均值,每次測(cè)量的數(shù)據(jù)是10次連讀數(shù)據(jù)的平均值。葉面積指數(shù)是取3次測(cè)量的平均值,每次測(cè)量包括一次冠層以上測(cè)量和5次冠層以下測(cè)量。每隔10~15min要對(duì)光譜儀進(jìn)行一次標(biāo)準(zhǔn)白板校正。植物冠層分析儀要在避光處使用,以避免陽光直射。根據(jù)統(tǒng)計(jì)學(xué)樣本要求,繪制小麥、大麥和油菜的平均光譜響應(yīng)隨波長(zhǎng)的變化曲線,來確定遙感監(jiān)測(cè)的最佳時(shí)期。我們只對(duì)小麥的3種投入水平的調(diào)查進(jìn)行了研究,對(duì)葉面積指數(shù)與各波段光譜值、一階微分光譜值和不同植被指數(shù)進(jìn)行了Pearson相關(guān)分析(見表1),并進(jìn)一步對(duì)與葉面積指數(shù)有顯著相關(guān)的光譜因子進(jìn)行逐步回歸分析,然后把實(shí)測(cè)數(shù)據(jù)代入方程來檢驗(yàn)回歸模型的準(zhǔn)確性。光譜數(shù)據(jù)也模擬LandsatTM的紅光和近紅外光波段來計(jì)算歸一化植被指數(shù)(NDVI),通過方差分析檢驗(yàn)不同處理下顯著性的差異。光譜數(shù)據(jù)預(yù)處理是由儀器自帶的軟件完成的,統(tǒng)計(jì)分析軟件為SPSSv11.5。

poYBAGNgu1KAEQOUAADstEZ53lQ07.jpeg

圖1ScottAAFCACS試驗(yàn)田布局

2結(jié)果分析

2.1生長(zhǎng)季小麥、大麥和油菜的光譜響應(yīng)

圖2顯示的是小麥、大麥和油菜在生長(zhǎng)季的光譜特征。在7月份,3種作物類型都呈典型的植被光譜曲線分布,由于葉綠素的吸收,近紅外波段呈高反射率,紅光波段呈低反射率,而且它們的光譜曲線也有明顯的差異。6月份作物都剛剛拔節(jié),光譜曲線顯示的基本是裸地的光譜響應(yīng)值,因此它們的曲線都比較接近,沒有明顯的紅光吸收區(qū)。8月份的測(cè)量是在作物收割前,這時(shí)小麥和大麥已經(jīng)枯黃,所以從可見光到近紅外波段都呈比較平直的曲線,只有油菜還有光合作用在進(jìn)行。7月應(yīng)該是利用遙感研究作物的最佳時(shí)期,因?yàn)樵诩t光波段的強(qiáng)吸收、中紅外波段的水吸收和近紅外波段植物細(xì)胞結(jié)構(gòu)的反射都表征植物達(dá)到了最大的光合作用。而小麥的生長(zhǎng)階段要比大麥和油菜提前,從光譜曲線上可以看出,6月份光合作用較高,7月份葉綠素的吸收減少,8月份光譜曲線更加平滑。

pYYBAGNgu1eAS9-oAACGEgntJKI83.jpeg

圖2試驗(yàn)田中小麥、大麥和油菜在2003年

生長(zhǎng)季的光譜響應(yīng)曲線

1300、1900和2500nm附近的噪聲區(qū)被刪除

2.2小麥作物的葉面積指數(shù)及其與長(zhǎng)勢(shì)的關(guān)系

小麥為春小麥,觀測(cè)時(shí)段基本為拔節(jié)期、抽穗期和灌漿期,小麥的葉面積指數(shù)呈拋物線狀(見圖3),在作物生長(zhǎng)前期小,作物生長(zhǎng)后期也很小,在作物生長(zhǎng)旺盛期(抽穗前期)葉面積指數(shù)達(dá)最大。

poYBAGNgu1eAdpzzAABBtsTnOWg27.jpeg

圖3生長(zhǎng)季3種處理下小麥的葉面積指數(shù)

pYYBAGNgu1eADU5UAABlmSRy0hU49.jpeg

圖47月份3種處理下小麥的光譜響應(yīng)曲線

3種處理小麥葉面積指數(shù)顯然不一樣:從生長(zhǎng)初期到即將收獲,整個(gè)狀況是high處理的小麥葉面積指數(shù)最大,organic處理的葉面積指數(shù)最小,re-duced處理的葉面積指數(shù)介于high、organic處理組的兩者之間,顯示出high處理組的小麥長(zhǎng)勢(shì)好,同時(shí)光合作用面積大,勢(shì)必最終產(chǎn)量要高;而reduced處理長(zhǎng)勢(shì)稍差,最后產(chǎn)量要受到影響;由于organic的葉面積指數(shù)最小,長(zhǎng)勢(shì)最差,群體光合作用最小,產(chǎn)量肯定最低(見圖4)。結(jié)果顯示,3種處理下的葉面積指數(shù)在3個(gè)生長(zhǎng)階段都有明顯的差異,而光譜差異只在生長(zhǎng)季的初期和中期比較顯著,在后期無明顯差異。數(shù)碼照片顯示了整個(gè)生長(zhǎng)季在3種處

理下小麥長(zhǎng)勢(shì)的差別(見圖5)。從葉面積指數(shù)大小可以分析出作物長(zhǎng)勢(shì)、估計(jì)作物產(chǎn)量,因此用遙感資料監(jiān)測(cè)葉面積指數(shù)可監(jiān)測(cè)作物長(zhǎng)勢(shì)和分析估計(jì)作物產(chǎn)量。

poYBAGNgu1iAe0tqAAD0B1ZO5pE55.jpeg

圖5在3個(gè)生長(zhǎng)階段3種處理下的小麥長(zhǎng)勢(shì)

2.3小麥葉面積指數(shù)與高光譜數(shù)據(jù)的關(guān)系分析

2.3.1遙感監(jiān)測(cè)小麥長(zhǎng)勢(shì)的最佳時(shí)段

對(duì)不同時(shí)期的小麥葉面積指數(shù)與光譜值進(jìn)行了相關(guān)分析(見圖6),從不同觀測(cè)時(shí)期小麥葉面積指數(shù)與光譜的相關(guān)系數(shù)來看,7月18日的相關(guān)系數(shù)值最大,8月11日相關(guān)系數(shù)值最小,6月13日的相關(guān)系數(shù)值介于兩者之間,而且6、7月份的相關(guān)系數(shù)值有規(guī)律,在紅光區(qū)、近紅外區(qū)、黃光區(qū)均有較大的吸收或反射區(qū),而8月上中旬的葉面積指數(shù)與光譜值之間的相關(guān)系數(shù)不僅小而且無規(guī)律,在紫外區(qū)和遠(yuǎn)紅光區(qū)有較大值,這不符合基本常規(guī),這主要是進(jìn)入8月后,小麥開始黃熟,葉子枯黃、小麥大量失水,其對(duì)光譜的影響遠(yuǎn)大于葉面積變化對(duì)光譜的影響,使得原有的規(guī)律失去。

結(jié)果表明,采用遙感資料對(duì)小麥長(zhǎng)勢(shì)進(jìn)行監(jiān)測(cè)和對(duì)產(chǎn)量進(jìn)行預(yù)測(cè)的最佳時(shí)段在本地區(qū)為6月下旬到7月中旬,此時(shí)約為拔節(jié)至抽穗開花期,葉面積指數(shù)值大、正常生長(zhǎng)的小麥葉子顏色、水分均正常,監(jiān)測(cè)結(jié)果可信,而且此時(shí)的監(jiān)測(cè)值對(duì)于分析小麥長(zhǎng)勢(shì)(從而可采取必要的栽培措施提高產(chǎn)量)和估測(cè)產(chǎn)量很重要,過早或過遲都難以有效估產(chǎn)或提出有效對(duì)策。進(jìn)入8月以后,小麥進(jìn)入灌漿后期,小麥顏色和水分均會(huì)產(chǎn)生干擾,影響監(jiān)測(cè)的可靠性,而且此時(shí)監(jiān)測(cè)意義也不大,因此僅分析7月份的光譜數(shù)據(jù)。

pYYBAGNgu12Absn7AABqf4IO8ig49.jpeg

圖6不同生長(zhǎng)季下波長(zhǎng)與葉面積指數(shù)的相關(guān)系數(shù)

4條水平線分別表示p=0.05和p=0.01時(shí)r的臨界值

2.3.2小麥葉面積指數(shù)與原始光譜變量的相關(guān)分析

由7月可見光、近紅外光譜與葉面積提取的相關(guān)系數(shù)(見圖7)可以看出:當(dāng)波長(zhǎng)722nm,光譜反射率與小麥葉面積指數(shù)呈正相關(guān),相關(guān)系數(shù)約在764nm處達(dá)到最大,然后在770nm附近,相關(guān)系數(shù)開始緩慢下降。波長(zhǎng)在可見光波段(400~700nm)內(nèi)(除了520~580nm外)和近紅外(740~924nm),光譜反射率和小麥葉面積指數(shù)之間的相關(guān)系數(shù)達(dá)到了顯著性檢驗(yàn)水平。波長(zhǎng)在684nm和764nm處存在著最大相關(guān)系數(shù),分別為-0.657

和0.620,其中684nm波長(zhǎng)處于紅光波谷中,與其他研究者使用的光譜區(qū)域682nm很相近。據(jù)此可初步認(rèn)為,監(jiān)測(cè)小麥葉面積的較佳波段為600~700nm和740~900nm波段范圍內(nèi),由此兩個(gè)波段構(gòu)建高光譜各植被指數(shù)和相關(guān)變量,可監(jiān)測(cè)小麥葉面積指數(shù)。

poYBAGNgu12AVAPvAAA6vw75MEA37.jpeg

圖77月份可見光、近紅外光譜與葉面積指數(shù)的相關(guān)系數(shù)

2.3.3小麥葉面積指數(shù)與一階微分光譜值的相關(guān)分析

在550~900nm波段范圍內(nèi),一階微分光譜和小麥葉面積指數(shù)之間約在552~681、830~900nm(中間振蕩很大)為負(fù)相關(guān),在706~755nm為正相關(guān),均達(dá)到顯著性檢驗(yàn)水平,最大相關(guān)系數(shù)波長(zhǎng)發(fā)生在631nm處和742nm(見圖8),分別為-0.798、0.769,其中742nm這個(gè)波長(zhǎng)被認(rèn)為是葉面積指數(shù)和一階微分光譜之間相關(guān)系數(shù)最大的波長(zhǎng)。這個(gè)波長(zhǎng)是光譜變化最大的位置,位于紅邊范圍。根據(jù)分析可以認(rèn)為,550~680nm和710~760nm為采用一階微分光譜監(jiān)測(cè)小麥葉面積指數(shù)的最佳波段,由此兩個(gè)波段構(gòu)建一階微分光譜各個(gè)植被指數(shù)及變量,可以分析小麥的長(zhǎng)勢(shì)狀況。

pYYBAGNgu12ASccHAABn02kKEo815.jpeg

圖87月份一階微分光譜與小麥葉面積指數(shù)的相關(guān)系數(shù)

紅線表示p=0.05時(shí)r的臨界值,

藍(lán)線表示p=0.01時(shí)r的臨界值

2.4監(jiān)測(cè)小麥葉面積指數(shù)的變量和植被指數(shù)的構(gòu)建

2.4.1因子選擇

根據(jù)前面的分析,紅光波段600~700nm和紅外波段740~900nm可作為監(jiān)測(cè)的依據(jù),為此我們選擇紅光谷、近紅外峰的反射率和其對(duì)應(yīng)的波長(zhǎng)作為監(jiān)測(cè)小麥葉面積指數(shù)的候選因子;選擇550~680nm和710~760nm光譜范圍內(nèi)紅光、近紅外的一階微分光譜谷和峰及其對(duì)應(yīng)的波長(zhǎng)作為候選因子。紅

邊(680~780nm)峰值及其紅邊位置和紅邊面積是目前研究高光譜監(jiān)測(cè)作物葉綠素、生理活動(dòng)、生物量等最為常用的因子[7-8],因此本文選取了紅邊峰值(紅邊內(nèi)一階微分光譜中的最大值)、紅邊位置(紅邊峰值對(duì)應(yīng)的波長(zhǎng))、紅邊面積(紅邊內(nèi)一階微分總和)作為候選因子。同時(shí)本文選擇了比值植被指數(shù)、簡(jiǎn)單植被指數(shù)、歸一化植被指數(shù)和對(duì)數(shù)植被指數(shù)作為候選因子。這些因子能否被用于監(jiān)測(cè)小麥的葉面積指數(shù),還必須進(jìn)行分析。可通過兩個(gè)方法:第一是直接進(jìn)行相關(guān)分析,看它們與葉面積指數(shù)的相關(guān)系數(shù)能否通過顯著性檢驗(yàn);第二就是用逐步回歸的方法篩選因子,剔除部分因子。

3.4.2因子篩選

根據(jù)上面的分析,我們選擇了15個(gè)因子,這15個(gè)因子都具有一定的物理學(xué)意義和生物學(xué)意義,采用數(shù)學(xué)方法進(jìn)行篩選,最后確定用于監(jiān)測(cè)小麥長(zhǎng)勢(shì)的因子。首先進(jìn)行了相關(guān)普查,結(jié)果見表1。

pYYBAGNgu16ATa5kAAA6ZAlomw0362.png

表1高光譜各個(gè)因子與葉面積指數(shù)的相關(guān)系數(shù)

由表1可見,高光譜各個(gè)因子與葉面積指數(shù)的相關(guān)系數(shù)除了X3(近紅外光譜740~900nm范圍內(nèi)最大的光譜值)、X4(近紅外峰對(duì)應(yīng)的波長(zhǎng))、X8(一階微分光譜最大值對(duì)應(yīng)的波長(zhǎng))外都達(dá)到了極顯著水平,其中X12(比值植被指數(shù))的相關(guān)系數(shù)值最大,達(dá)到-0.8249,其次為歸一化植被指數(shù)。從表1可以看出,根據(jù)相關(guān)系數(shù)的分析,所選大部分高光譜因子的變化與小麥葉面積指數(shù)的變化有關(guān),可以用于分析葉面積指數(shù)的大小。接著根據(jù)相關(guān)分析篩選后獲取的各因子,采用逐步回歸的方法選擇因子,顯著性定為0.01,只有一個(gè)因子被選取,就是比值植被指數(shù)。這就說明其他因子在此分析中做的方差貢獻(xiàn)很小,也說明只需要一個(gè)因子就可以分析高光譜對(duì)小麥葉面積指數(shù)的影響。這是因?yàn)槔碚撋蟻碚f,用多項(xiàng)式回歸進(jìn)行分析時(shí),因子之間必須是相互獨(dú)立的,而本文中的各因

子之間是相互關(guān)聯(lián)的,所以只需要選出一個(gè)因子,就有代表性。通常會(huì)選出相關(guān)系數(shù)大,F檢驗(yàn)值大的因子,但若選擇其他有關(guān)因子(歸一化植被指數(shù))也是可以的。

2.5小麥葉面積指數(shù)的高光譜遙感估算模型

2.5.1模型建立

根據(jù)上面的分析,采用單因子的高光譜變量可以分析監(jiān)測(cè)小麥的葉面積指數(shù),因此采用單因子進(jìn)行分析。從比值植被指數(shù)與葉面積指數(shù)的關(guān)系(見圖9)可以看出,比值植被指數(shù)與小麥葉面積指數(shù)呈負(fù)相

關(guān),比值越小,葉面積指數(shù)越大。用線性、對(duì)數(shù)、指數(shù)分別模擬,可以看出指數(shù)曲線最好,相關(guān)系數(shù)為R2=0.732,通過了0.01極顯著檢驗(yàn)。

pYYBAGNgu16AG_JiAABEyw51r2s65.jpeg

圖9比值植被指數(shù)與葉面積指數(shù)的關(guān)系

為此建立了監(jiān)測(cè)小麥葉面積指數(shù)的高光譜各因子不同曲線或線性的計(jì)算公式,可用于監(jiān)測(cè)小麥的長(zhǎng)勢(shì)(見表2)。

2.5.2模型驗(yàn)證

表2顯示,比較好的因子是X12(比值植被指數(shù))和X13(歸一化植被指數(shù)),較好的模型是指數(shù)模型,相關(guān)系數(shù)分別是R2=0.732和R2=0.727,方程y=2.3575e-4.8975X12和y=0.082e3.5448X13。進(jìn)行回代擬合,誤差分別為1.515%和1.32%(見圖10),效果非常好,因此可把它們作為監(jiān)測(cè)地面葉面積指數(shù)及長(zhǎng)勢(shì)的合適模型。

表2高光譜監(jiān)測(cè)小麥葉面積指數(shù)模型

pYYBAGNgu2OAMnDiAABEg1zIybs446.png

poYBAGNgu2OAdPFoAABCigsC1gw30.jpeg

圖10比值植被指數(shù)與葉面積指數(shù)的關(guān)系

3結(jié)果與討論

結(jié)果顯示,高光譜遙感可以用于監(jiān)測(cè)農(nóng)作物長(zhǎng)勢(shì)。從生長(zhǎng)季的早期到中期,光譜和葉面積指數(shù)在不同處理下有顯著差異。7月中期是用遙感資料監(jiān)測(cè)農(nóng)作物長(zhǎng)勢(shì)的最佳季節(jié),紅光波段與近紅外波段反射率的比值和基于這兩個(gè)波段構(gòu)造的歸一化植被指數(shù)是監(jiān)測(cè)農(nóng)作物長(zhǎng)勢(shì)的最佳植被指數(shù)。由于結(jié)論是基于一個(gè)生長(zhǎng)季的田間數(shù)據(jù)得到的,所以結(jié)果可能與在不同的生長(zhǎng)條件下利用幾年時(shí)間得出的結(jié)果有所不同(例如季節(jié)可能會(huì)影響測(cè)量時(shí)間的選擇)。進(jìn)一步的研究將測(cè)量一些氣象數(shù)據(jù)來反映生長(zhǎng)季的特性,并進(jìn)行第二次生長(zhǎng)季的田間試驗(yàn)。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 遙感技術(shù)
    +關(guān)注

    關(guān)注

    0

    文章

    77

    瀏覽量

    17133
  • 高光譜
    +關(guān)注

    關(guān)注

    0

    文章

    398

    瀏覽量

    10175
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    當(dāng)花粉“肉眼可見”:光譜遙感技術(shù)如何破解城市過敏難題?

    花粉種類。而光譜遙感技術(shù),正以精準(zhǔn)感知、快速響應(yīng)、科學(xué)治理的優(yōu)勢(shì),為城市花粉管理提供全新思路。 二、光譜
    的頭像 發(fā)表于 04-12 16:32 ?168次閱讀
    當(dāng)花粉“肉眼可見”:<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>技術(shù)如何破解城市過敏難題?

    光譜相機(jī)農(nóng)業(yè)監(jiān)測(cè)的應(yīng)用

    現(xiàn)代農(nóng)業(yè),科技的進(jìn)步不斷推動(dòng)著生產(chǎn)方式的變革,其中高光譜成像技術(shù)作為一種新興的監(jiān)測(cè)手段,已經(jīng)開始引起越來越多的關(guān)注。
    的頭像 發(fā)表于 04-03 15:44 ?153次閱讀

    光譜相機(jī):農(nóng)業(yè)監(jiān)測(cè)革命新利器!

    隨著光譜成像技術(shù)的研究案例不斷增加,智慧農(nóng)業(yè)監(jiān)測(cè)領(lǐng)域,通過對(duì)不同的農(nóng)作物、土染以及病蟲害的光譜
    的頭像 發(fā)表于 01-20 09:28 ?409次閱讀

    如何利用地物光譜進(jìn)行空氣質(zhì)量監(jiān)測(cè)?

    地物光譜遙感技術(shù)環(huán)境監(jiān)測(cè)領(lǐng)域展現(xiàn)出強(qiáng)大的應(yīng)用潛力。借助
    的頭像 發(fā)表于 01-03 10:37 ?291次閱讀
    如何利用地物<b class='flag-5'>高</b><b class='flag-5'>光譜</b>進(jìn)行空氣質(zhì)量<b class='flag-5'>監(jiān)測(cè)</b>?

    基于光譜的辣椒葉片SPAD反演研究

    無人機(jī)光譜遙感技術(shù)和近地光譜技術(shù)農(nóng)作物的生長(zhǎng)狀
    的頭像 發(fā)表于 12-31 10:28 ?428次閱讀
    基于<b class='flag-5'>高</b><b class='flag-5'>光譜</b>的辣椒葉片SPAD反演研究

    地物光譜儀廠家農(nóng)作物管理的關(guān)鍵作用

    在當(dāng)今農(nóng)業(yè)現(xiàn)代化的進(jìn)程,精準(zhǔn)、高效的農(nóng)作物管理成為了保障糧食安全、提高農(nóng)業(yè)生產(chǎn)效益和可持續(xù)性發(fā)展的關(guān)鍵。地物光譜儀作為一種先進(jìn)的科學(xué)儀器,為農(nóng)作物
    的頭像 發(fā)表于 07-19 14:55 ?501次閱讀
    地物<b class='flag-5'>光譜</b>儀廠家<b class='flag-5'>在</b><b class='flag-5'>農(nóng)作物</b>管理<b class='flag-5'>中</b>的關(guān)鍵作用

    從哪些角度選擇光譜遙感成像光譜儀?這些廠家比較有實(shí)力!

    光譜遙感成像光譜儀作為一種先進(jìn)的遙感技術(shù)設(shè)備,環(huán)境監(jiān)測(cè)
    的頭像 發(fā)表于 07-16 15:12 ?943次閱讀
    從哪些角度選擇<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>成像<b class='flag-5'>光譜</b>儀?這些廠家比較有實(shí)力!

    基于無人機(jī)遙感作物長(zhǎng)勢(shì)監(jiān)測(cè)研究進(jìn)展

    無人機(jī)遙感技術(shù)通過對(duì)作物生長(zhǎng)過程的環(huán)境因素、物理指標(biāo)和生化參數(shù)等進(jìn)行實(shí)時(shí)或定期監(jiān)測(cè),來評(píng)估和預(yù)測(cè)作物的生長(zhǎng)情況和生產(chǎn)潛力,指導(dǎo)農(nóng)業(yè)生產(chǎn)和管
    的頭像 發(fā)表于 07-12 14:14 ?1143次閱讀
    基于無人機(jī)<b class='flag-5'>遙感</b>的<b class='flag-5'>作物</b><b class='flag-5'>長(zhǎng)勢(shì)</b><b class='flag-5'>監(jiān)測(cè)</b>研究進(jìn)展

    光譜成像系統(tǒng):光譜遙感圖像的光譜混合模型

    光譜遙感是成像技術(shù)和光譜技術(shù)相結(jié)合的多維信息獲取技術(shù),可以同時(shí)獲取地面目標(biāo)的光譜信息和空間信息。
    的頭像 發(fā)表于 07-10 11:54 ?1486次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像系統(tǒng):<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>圖像的<b class='flag-5'>光譜</b>混合模型

    農(nóng)作物生長(zhǎng)環(huán)境的遠(yuǎn)程監(jiān)控與智能調(diào)控

    農(nóng)作物生長(zhǎng)環(huán)境的遠(yuǎn)程監(jiān)控與智能調(diào)控 農(nóng)作物生長(zhǎng)環(huán)境的遠(yuǎn)程監(jiān)控與智能調(diào)控技術(shù),作為現(xiàn)代農(nóng)業(yè)科技的核心組成部分,正逐步革新傳統(tǒng)農(nóng)業(yè)的生產(chǎn)模式,推動(dòng)農(nóng)業(yè)向精準(zhǔn)化、智能化轉(zhuǎn)型。這一技術(shù)體系綜合應(yīng)用了物聯(lián)網(wǎng)
    的頭像 發(fā)表于 07-04 17:44 ?806次閱讀
    <b class='flag-5'>農(nóng)作物</b>生長(zhǎng)環(huán)境的遠(yuǎn)程監(jiān)控與智能調(diào)控

    光譜遙感技術(shù)植被覆蓋區(qū)域地質(zhì)調(diào)查的應(yīng)用

    遙感技術(shù)具有高效率、低成本、大面積、多時(shí)相獲取地表信息等優(yōu)點(diǎn),隨著光譜成像技術(shù)的發(fā)展和成熟,其更加寬廣的光譜范圍和更加精準(zhǔn)的光譜區(qū)分能力為
    的頭像 發(fā)表于 06-23 09:52 ?796次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>技術(shù)<b class='flag-5'>在</b><b class='flag-5'>高</b>植被覆蓋區(qū)域地質(zhì)調(diào)查<b class='flag-5'>中</b>的應(yīng)用

    便攜式光譜成像系統(tǒng):巖礦光譜遙感

    光譜成像作為目前遙感領(lǐng)域最先進(jìn)的技術(shù),地質(zhì)應(yīng)用取得了巨大成功。巖石 和礦物由于電子過程和分子振動(dòng)可以產(chǎn)生特征的
    的頭像 發(fā)表于 06-21 15:02 ?1075次閱讀
    便攜式<b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像系統(tǒng):巖礦<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>

    使用光譜技術(shù)檢測(cè)農(nóng)作物病蟲害

    農(nóng)業(yè)生產(chǎn)中,病蟲害是影響農(nóng)作物產(chǎn)量和品質(zhì)的重要因素。傳統(tǒng)的病蟲害檢測(cè)方法通常依賴于人工觀察和化學(xué)分析,耗時(shí)費(fèi)力且不夠精確。隨著光譜技術(shù)的發(fā)展,基于光譜分析的病蟲害檢測(cè)方法以其高效、精準(zhǔn)、非接觸的特點(diǎn)
    的頭像 發(fā)表于 06-06 11:16 ?981次閱讀
    使用<b class='flag-5'>光譜</b>技術(shù)檢測(cè)<b class='flag-5'>農(nóng)作物</b>病蟲害

    光譜成像技術(shù)膚檢測(cè)、植被遙感與環(huán)境檢測(cè)的應(yīng)用

    已在多個(gè)領(lǐng)域得到了廣泛應(yīng)用。本文將深入探討光譜成像技術(shù)膚檢測(cè)、植被遙感和環(huán)境檢測(cè)的具體應(yīng)用及其優(yōu)勢(shì)。 一、
    的頭像 發(fā)表于 05-16 15:31 ?1110次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像技術(shù)<b class='flag-5'>在</b>膚檢測(cè)、植被<b class='flag-5'>遙感</b>與環(huán)境檢測(cè)<b class='flag-5'>中</b>的應(yīng)用

    基于無人機(jī)光譜遙感的太行山經(jīng)濟(jì)林樹種識(shí)別研究1.0

    開展基于光譜遙感的山區(qū)經(jīng)濟(jì)林樹種識(shí)別研究既豐富光譜在樹種分類識(shí)別上的應(yīng)用,也對(duì)監(jiān)測(cè)山區(qū)經(jīng)濟(jì)林
    的頭像 發(fā)表于 05-14 09:35 ?510次閱讀
    基于無人機(jī)<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>遙感</b>的太行山經(jīng)濟(jì)林樹種識(shí)別研究1.0