一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是圖神經(jīng)網(wǎng)絡(luò) 誰在使用圖神經(jīng)網(wǎng)絡(luò)

NVIDIA英偉達(dá) ? 來源:海豚數(shù)據(jù)科學(xué)實驗室 ? 作者:海豚數(shù)據(jù)科學(xué)實驗 ? 2022-11-03 22:46 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的預(yù)測能力應(yīng)用于豐富的數(shù)據(jù)結(jié)構(gòu)中,這些數(shù)據(jù)結(jié)構(gòu)將物體及其對應(yīng)關(guān)系描述為圖中用線連成的點。

當(dāng)兩種技術(shù)相融合,就可以創(chuàng)造出一些新的和奇妙的事物,比如手機和瀏覽器融合成了智能手機。

當(dāng)今,開發(fā)者正在將 AI 發(fā)現(xiàn)規(guī)律的能力應(yīng)用于大型圖數(shù)據(jù)庫,這些數(shù)據(jù)庫存儲著包含各數(shù)據(jù)點之間關(guān)系的信息。兩者組合成被稱為圖神經(jīng)網(wǎng)絡(luò)(GNN)的強大新工具。

什么是圖神經(jīng)網(wǎng)絡(luò)

圖神經(jīng)網(wǎng)絡(luò)將深度學(xué)習(xí)的預(yù)測能力應(yīng)用于豐富的數(shù)據(jù)結(jié)構(gòu)中,這些數(shù)據(jù)結(jié)構(gòu)將物體及其對應(yīng)關(guān)系描述為圖中用線連成的點。

在圖神經(jīng)網(wǎng)絡(luò)中,被稱為“節(jié)點”的數(shù)據(jù)點通過被稱為“邊”的線連接,各種元素均以數(shù)學(xué)形式表達(dá),這使機器學(xué)習(xí)算法可以在節(jié)點、邊或整個圖的層面做出有用的預(yù)測。

圖神經(jīng)網(wǎng)絡(luò)能做什么

越來越多的公司正在使用 GNN 改進(jìn)藥物研發(fā)、欺詐檢測和推薦系統(tǒng)。這些以及更多其他應(yīng)用都依賴于尋找數(shù)據(jù)點之間的關(guān)系規(guī)律。

研究人員正在探索 GNN 在計算機圖形學(xué)、網(wǎng)絡(luò)安全、基因組學(xué)和材料科學(xué)中的用例。近期的一篇論文描述了 GNN 如何利用圖形式的交通地圖改進(jìn)對到達(dá)時間的預(yù)測。

許多科學(xué)和工業(yè)領(lǐng)域已在圖數(shù)據(jù)庫中儲存了有價值的數(shù)據(jù)。通過深度學(xué)習(xí),他們可以訓(xùn)練預(yù)測模型,從圖中挖掘出新穎的洞察。

19b55d58-5b7c-11ed-a3b6-dac502259ad0.png

許多科學(xué)和工業(yè)領(lǐng)域的知識都可以用圖來表達(dá)

亞馬遜科技(AWS)高級首席科學(xué)家 George Karypis 在今年早些時候的講座中表示:“GNN 是深度學(xué)習(xí)研究中最熱門的領(lǐng)域。越來越多的應(yīng)用正在使用 GNN 來提高其性能?!?/p>

很多人都深表贊同。斯坦福大學(xué)副教授 Jure Leskovec 表示:“GNN 正在引得越來越多的關(guān)注,它們可以靈活地建立復(fù)雜關(guān)系的模型,而這是傳統(tǒng)神經(jīng)網(wǎng)絡(luò)所做不到的?!彼谘葜v中展示了下面的這張 AI 論文圖表,里面提到了 GNN。

19d79d00-5b7c-11ed-a3b6-dac502259ad0.png

誰在使用圖神經(jīng)網(wǎng)絡(luò)?

亞馬遜在 2017 年表示正在使用 GNN 來檢測欺詐。2020 年,亞馬遜推出了供外部用戶用于欺詐檢測、推薦系統(tǒng)等應(yīng)用的公共 GNN 服務(wù)。

為了維持客戶的高度信任,亞馬遜搜索引擎采用 GNN 來檢測惡意賣家、買家和產(chǎn)品。借助 NVIDIA GPU,該搜索引擎能夠探索具有數(shù)千萬個節(jié)點和數(shù)億條邊的圖,并同時將訓(xùn)練時間從 24 小時縮短到 5 小時。

葛蘭素史克 AI 全球負(fù)責(zé)人 Kim Branson 在 GNN 研討會的某場小組討論會上表示,生物制藥公司葛蘭素史克維護(hù)著擁有近 5000 億個節(jié)點的知識圖譜,該圖譜被用于該公司的許多機器語言模型中。

LinkedIn 高級軟件工程師 Jaewon Yang 在該研討會的另一場座談會上表示,LinkedIn 使用 GNN 提供社交推薦,并了解人的技能與其工作職位之間的關(guān)系

NVIDIA 杰出工程師 Joe Eaton 表示:“GNN 是通用工具,我們每年都會開發(fā)一些新的 GNN 應(yīng)用?!蹦壳?Joe Eaton 正在領(lǐng)導(dǎo)將加速計算應(yīng)用于 GNN 的團(tuán)隊。他表示“我們甚至都還沒有觸及到 GNN 的表層功能?!?/p>

另一個跡象也表明了人們對 GNN 的興趣——Leskovec 在斯坦福大學(xué)教授 GNN 的課程視頻已突破 70 萬次瀏覽量。

GNN 如何工作?

到目前為止,深度學(xué)習(xí)主要集中在圖像和文本上。這兩種結(jié)構(gòu)化數(shù)據(jù)可以被描述為單詞序列或像素網(wǎng)格。相比之下,圖是非結(jié)構(gòu)化的,因此可以是任何形狀或尺寸,并包含圖像、文本等任何類型的數(shù)據(jù)。

GNN 使用被稱為信息傳遞的流程將圖組織起來,以便機器學(xué)習(xí)算法的使用。

信息傳遞將關(guān)于鄰近節(jié)點的信息嵌入到每個節(jié)點中。AI 模型利用嵌入的信息來尋找規(guī)律并進(jìn)行預(yù)測。

19eec7e6-5b7c-11ed-a3b6-dac502259ad0.png

三類 GNN 中的數(shù)據(jù)流示例

例如,推薦系統(tǒng)使用將節(jié)點嵌入 GNN 的方式來匹配客戶和產(chǎn)品;欺詐檢測系統(tǒng)使用邊緣嵌入來發(fā)現(xiàn)可疑交易;藥物發(fā)現(xiàn)模型通過比較整個分子圖來找出它們之間的反應(yīng)。

GNN 還有兩個獨特之處:它們使用稀疏數(shù)學(xué),而且模型通常只有兩到三層。其他 AI 模型通常使用密集數(shù)學(xué)并且有數(shù)百個神經(jīng)網(wǎng)絡(luò)層。

1a01d192-5b7c-11ed-a3b6-dac502259ad0.png

GNN 流程在輸入圖后輸出預(yù)測

GNN 的發(fā)展史

意大利研究人員在 2009 年發(fā)表的論文中首次將這種神經(jīng)網(wǎng)絡(luò)命名為“圖神經(jīng)網(wǎng)絡(luò)”。但直到八年之后,阿姆斯特丹的兩位研究人員才使用被稱為“圖卷積網(wǎng)絡(luò)”(GCN)的圖神經(jīng)網(wǎng)絡(luò)變體展示了這種神經(jīng)網(wǎng)絡(luò)的力量。GCN 也是當(dāng)今最流行的 GNN 之一。

GCN 啟發(fā)了 Leskovec 和他的兩個斯坦福大學(xué)研究生創(chuàng)造出 GraphSage——一個展示信息傳遞功能新工作方式的 GNN。2017 年夏天,擔(dān)任 Pinterest 首席科學(xué)家的 Leskovec 對此 GNN 進(jìn)行了測試。

1a437c3c-5b7c-11ed-a3b6-dac502259ad0.png

GraphSage 開創(chuàng)了在 GNN 中傳遞信息的強大聚合技術(shù)

他們所創(chuàng)建的 PinSage 是包含 30 億節(jié)點和 180 億邊的推薦系統(tǒng),這超過了當(dāng)時的其他 AI 模型。

如今,Pinterest 將 PinSage 應(yīng)用于整個公司的 100 多個用例。該公司高級機器學(xué)習(xí)工程師 Andrew Zhai 于在線座談會上表示:“沒有 GNN,Pinterest 就不會有今天的吸引力?!?/p>

與此同時,其他變體和混合體也紛紛出現(xiàn),包括圖循環(huán)網(wǎng)絡(luò)、圖注意力網(wǎng)絡(luò)等。GAT 借用 Transformer 模型中定義的注意力機制,幫助 GNN 專注于數(shù)據(jù)集中最相關(guān)的部分。

1b97b5c6-5b7c-11ed-a3b6-dac502259ad0.png

GNN 變體家族樹概覽圖

擴展圖神經(jīng)網(wǎng)絡(luò)

展望未來,GNN 需要進(jìn)行全方位的擴展。

還未維護(hù)圖數(shù)據(jù)庫的企業(yè)機構(gòu)需要使用工具來減輕創(chuàng)建這些復(fù)雜數(shù)據(jù)結(jié)構(gòu)的工作負(fù)擔(dān)。

使用圖數(shù)據(jù)庫的人都知道在某些情況下這些數(shù)據(jù)庫會不斷擴大,單個節(jié)點或邊緣會被嵌入成千上萬個特征。這為通過網(wǎng)絡(luò)將存儲于子系統(tǒng)中的海量數(shù)據(jù)集高效加載到處理器中帶來了挑戰(zhàn)。

Eaton 表示:“我們正在提供各種產(chǎn)品來最大程度地提高加速系統(tǒng)的內(nèi)存、計算帶寬與吞吐量,以便解決此類數(shù)據(jù)加載和擴展問題?!?/p>

作為這項工作的內(nèi)容之一,NVIDIA 在 GTC 上宣布,除了深度圖庫(DGL)之外,公司現(xiàn)在還支持 PyTorch Geometric(PyG)。這是當(dāng)下最流行的兩個 GNN 軟件框架。

1bde7d4e-5b7c-11ed-a3b6-dac502259ad0.png

NVIDIA 提供多種工具加快 GNN 的構(gòu)建

經(jīng)過 NVIDIA 優(yōu)化的 DGL 和 PyG 容器針對 NVIDIA GPU 進(jìn)行了性能調(diào)整和測試。它們?yōu)殚_始使用 GNN 開發(fā)應(yīng)用的人提供了方便的平臺。
審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103635
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35164

    瀏覽量

    279999
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122798

原文標(biāo)題:什么是圖神經(jīng)網(wǎng)絡(luò)?

文章出處:【微信號:NVIDIA_China,微信公眾號:NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?924次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?771次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?858次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1196次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1129次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1215次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實時機器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    。 2.一個小型神經(jīng)網(wǎng)絡(luò) 3.用CIFAR-10數(shù)據(jù)集訓(xùn)練的CIFAR網(wǎng)絡(luò)模型 CIFAR-10是一個特定數(shù)據(jù)集,通常用于訓(xùn)練CIFAR
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個在機器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡(luò)模型,包括模型設(shè)計、數(shù)據(jù)預(yù)處理、模型訓(xùn)練、評估以及優(yōu)化等方面的內(nèi)
    的頭像 發(fā)表于 07-19 17:19 ?1569次閱讀