一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

復(fù)旦&微軟提出?OmniVL:首個(gè)統(tǒng)一圖像、視頻、文本的基礎(chǔ)預(yù)訓(xùn)練模型

CVer ? 來源:CVer ? 作者:CVer ? 2022-12-14 15:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

引言

基礎(chǔ)模型 (Foundation model) 指的是在大量數(shù)據(jù)上訓(xùn)練出來的、可以適應(yīng)一系列下游任務(wù)的模型[1],它被看作是邁向通用人工智能的重要一步。近些年來,隨著CLIP的橫空出世,視覺-文本預(yù)訓(xùn)練 (Vision-Language Pretraining) 及其在各類任務(wù)的遷移學(xué)習(xí)成為了備受關(guān)注的研究方向,并被認(rèn)為是建立視覺基礎(chǔ)模型的一個(gè)頗具前景的方向。

根據(jù)輸入數(shù)據(jù)和目標(biāo)下游任務(wù)的不同,現(xiàn)有的VLP方法可以大致分為兩類:圖像-文本預(yù)訓(xùn)練和視頻-文本預(yù)訓(xùn)練。前者從圖像-文本對中學(xué)習(xí)視覺和語言表征的聯(lián)合分布,后者則從視頻-文本對中建立視頻幀和文本之間的語義關(guān)聯(lián)。然而,當(dāng)前尚無工作探索將二者統(tǒng)一起來,這篇文章認(rèn)為這主要因?yàn)楝F(xiàn)有的訓(xùn)練方式無法發(fā)揮圖像-文本預(yù)訓(xùn)練和視頻-文本預(yù)訓(xùn)練之間的互補(bǔ)性,但單純地實(shí)現(xiàn)統(tǒng)一而在兩類下游任務(wù)上折損性能將是沒有意義的。盡管困難重重,對于基礎(chǔ)模型的追求使得這一問題依舊難以回避。

這促使這篇工作思考并最終提出了一個(gè)真正統(tǒng)一的視覺-語言基礎(chǔ)模型OmniVL以同時(shí)支持圖像-文本和視頻-文本的預(yù)訓(xùn)練以及相應(yīng)的下游任務(wù),包括視覺任務(wù)(如圖像分類、視頻動(dòng)作識別)、跨模態(tài)對齊任務(wù)(如圖像/視頻-文本檢索)以及多模態(tài)理解和生成任務(wù)(如圖像/視頻問答、字幕自動(dòng)生成等)。OmniVL第一次探索出了圖像和視頻任務(wù)雙向互助的訓(xùn)練范式,而不是以往的單一方向,即用圖像(圖像-語言)來幫助視頻(視頻-語言)。

方法

OmniVL實(shí)現(xiàn)了模態(tài)、功能和訓(xùn)練數(shù)據(jù)三個(gè)維度的統(tǒng)一,本篇對方法的介紹也將圍繞著三個(gè)統(tǒng)一進(jìn)行展開。

7fa457fa-7b7e-11ed-8abf-dac502259ad0.png

統(tǒng)一的模態(tài).OmniVL采用了一個(gè)統(tǒng)一的基于Transformer的視覺編碼器來提取視覺表征,其中視頻與圖像輸入共享大部分網(wǎng)絡(luò)結(jié)構(gòu),對于視頻而言,OmniVL采用了3D patching embedding和時(shí)間注意力塊[4]。此外,OmniVL額外利用一個(gè)文本編碼器來提取語言表征。

統(tǒng)一的功能.OmniVL采用了編碼器-解碼器的結(jié)構(gòu),并具有兩個(gè)視覺引導(dǎo)的解碼器:跨模態(tài)對齊解碼器和文本生成解碼器,前者通過視覺-文本匹配(的二分類)損失進(jìn)行監(jiān)督以學(xué)習(xí)視覺和文本模態(tài)之間的對齊,后者則通過語言建模(的生成式回歸)損失進(jìn)行監(jiān)督以學(xué)習(xí)從視覺特征中生成文本的能力。這兩個(gè)解碼器與上述的兩個(gè)編碼器相互配合,賦予了OmniVL“理解“和“生成”的能力。

統(tǒng)一的數(shù)據(jù).受到Florence[5]中使用的統(tǒng)一對比學(xué)習(xí)[6]的啟發(fā),OmniVL統(tǒng)一了圖像-文本和圖像-標(biāo)簽數(shù)據(jù)作為預(yù)訓(xùn)練語料庫、并將其進(jìn)一步擴(kuò)展到視頻-文本和視頻-標(biāo)簽數(shù)據(jù)上。這基于兩個(gè)方面的考慮:1)利用盡可能多的有監(jiān)督(或無監(jiān)督)的數(shù)據(jù)來豐富語料庫;2)人工標(biāo)注的視覺-標(biāo)簽數(shù)據(jù)(如ImageNet和Kinetics-400)可以幫助模型學(xué)習(xí)出更具辨別性的表征,這有助于分類相關(guān)的遷移學(xué)習(xí)任務(wù),而從網(wǎng)絡(luò)爬取的視覺-語言數(shù)據(jù) (如CC12M和WebVid) 涵蓋更廣泛的視覺概念,這有助于跨模態(tài)任務(wù)。這種簡單的擴(kuò)展可以幫助OmniVL同時(shí)享有兩種優(yōu)勢。

最后回到了上面提到的最重要的問題:如何實(shí)現(xiàn)圖像-文本和視頻-文本學(xué)習(xí)的相互促進(jìn)。前文提到,現(xiàn)有工作往往只是單獨(dú)利用圖像-文本或者視頻-文本進(jìn)行預(yù)訓(xùn)練(如下圖2-3行),因此在另一類任務(wù)上的表現(xiàn)往往差強(qiáng)人意(多數(shù)情況被直接忽略)。尤其是如果只在視頻-文本上預(yù)訓(xùn)練的話,受限于有限的數(shù)據(jù)規(guī)模、以及視頻數(shù)據(jù)本身的復(fù)雜性,在對應(yīng)的視頻任務(wù)上表現(xiàn)也很糟糕。為了解決這一問題,一些工作如FiT[7]提出了將圖像看作單幀視頻、從而利用其和視頻數(shù)據(jù)進(jìn)行聯(lián)合訓(xùn)練(如下圖第4行),這一做法相較單純地利用視頻數(shù)據(jù)有顯著提升,但是直接從零學(xué)習(xí)圖像和視頻的表征以及跨模態(tài)的對齊顯然頗具挑戰(zhàn)性,這為網(wǎng)絡(luò)的學(xué)習(xí)和收斂增加了困難。Pretrain-then-finetuning是視覺領(lǐng)域一個(gè)常用的做法,它指的是首先在標(biāo)準(zhǔn)的圖像數(shù)據(jù)集上訓(xùn)練骨干網(wǎng)絡(luò)如ResNet,然后將其在下游任務(wù)包括視頻動(dòng)作識別上進(jìn)行微調(diào),這一方法在各類任務(wù)上都取得了顯著的成功。借鑒于此,一種簡單的做法是首先在圖像-文本上進(jìn)行第一階段的預(yù)訓(xùn)練、然后在視頻-文本上進(jìn)行第二階段的預(yù)訓(xùn)練(如下圖第5行)。這一做法是很有競爭力的一個(gè)baseline,但是在一方面在圖像任務(wù)上的性能有所下降、另一方面在視頻任務(wù)上的表現(xiàn)還不夠驚艷。

7fe9706a-7b7e-11ed-8abf-dac502259ad0.png

為了更加充分地利用圖像-文本和視頻-文本數(shù)據(jù)的互補(bǔ)性、進(jìn)一步提升在不同下游任務(wù)上的表現(xiàn),OmniVL提出了一個(gè)解藕的聯(lián)合訓(xùn)練方式,即首先在圖像-文本上進(jìn)行預(yù)訓(xùn)練、然后結(jié)合視頻-文本進(jìn)行聯(lián)合預(yù)訓(xùn)練(如上圖第6行),這不僅可以防止對圖像表征的遺忘、甚至可以在二者對應(yīng)的任務(wù)上繼續(xù)提高性能。這篇工作認(rèn)為這是由于第一階段網(wǎng)絡(luò)可以專注在學(xué)習(xí)空間表征和其與文本模態(tài)的對齊上、第二階段則可以增益性地學(xué)習(xí)運(yùn)動(dòng)表征和跨模態(tài)的關(guān)系建模,這不僅使學(xué)習(xí)從空間維度到時(shí)間維度更加高效,而且還能使不同源的數(shù)據(jù)之間形成互補(bǔ)。

實(shí)驗(yàn)

視覺任務(wù)

文章首先采用經(jīng)典的圖像分類 (linear probing) 和視頻動(dòng)作識別任務(wù) (finetuning) 作為基準(zhǔn)評估了視覺編碼器在視覺任務(wù)上的表現(xiàn)。

80165b84-7b7e-11ed-8abf-dac502259ad0.png

80549cbe-7b7e-11ed-8abf-dac502259ad0.png

遵從CLIP的實(shí)現(xiàn),OmniVL凍結(jié)了視覺編碼器的參數(shù)并對新附加的線性層進(jìn)行微調(diào)。在6個(gè)圖像分類數(shù)據(jù)集上,OmniVL相比于大多數(shù)baseline取得了一致更好的結(jié)果。與CLIP和FLAVA (70M) 相比,雖然使用明顯更少預(yù)訓(xùn)練數(shù)據(jù),OmniVL仍然取得了總體上有競爭力的結(jié)果。

對于視頻動(dòng)作識別,文章在兩個(gè)規(guī)模較小的數(shù)據(jù)集UCF101和HMDB51上評估了linear probing的結(jié)果,并在兩個(gè)規(guī)模較大的數(shù)據(jù)集Kinetics-400和Something-something V2上評估了微調(diào)的結(jié)果,實(shí)驗(yàn)表明OmniVL都顯著地超越了baseline。

跨模態(tài)對齊任務(wù)

接下來文章探究了OmniVL在圖像-文本檢索和文本到視頻檢索任務(wù)上的表現(xiàn)。值得一提的是,為了平衡推理效率和多模態(tài)信息的深度融合,OmniVL首先根據(jù)單模態(tài)編碼器得到視覺和文本embedding的相似度得分選擇Top-K(默認(rèn)為K=128)候選者,然后利用跨模態(tài)對齊解碼器計(jì)算其成對的匹配得分對候選者重新排序,這種雙階段匹配的方式進(jìn)一步體現(xiàn)了該架構(gòu)的優(yōu)越性。

807604e4-7b7e-11ed-8abf-dac502259ad0.png

80d0a3b8-7b7e-11ed-8abf-dac502259ad0.png

從上圖可以看出,無論是在圖像-文本檢索還是文本到視頻檢索上,OmniVL都在不同數(shù)據(jù)集上取得了目前最佳的性能。尤其是在文本到視頻檢索任務(wù)上,得益于所提出的解藕聯(lián)合預(yù)訓(xùn)練方法,OmniVL顯著地超越了現(xiàn)有方法。

多模態(tài)理解和生成任務(wù)

以視覺為基礎(chǔ)的跨模態(tài)對齊解碼器和文本生成解碼器使OmniVL具備了多模態(tài)理解和生成的能力,在這一部分中,文章評估了它在字幕生成和圖像/視頻問題回答上的表現(xiàn)。

8107acf0-7b7e-11ed-8abf-dac502259ad0.png

8124b32c-7b7e-11ed-8abf-dac502259ad0.png

在這類任務(wù)上,OmniVL同樣取得了最好的結(jié)果。

總結(jié)和未來工作

這篇工作提出了OmniVL,一個(gè)全新的視覺-語言基礎(chǔ)模型,它將圖像-語言和視頻-語言統(tǒng)一起來,并同時(shí)支持視覺任務(wù)、跨模態(tài)對齊任務(wù)以及多模態(tài)的理解和生成任務(wù)。OmniVL采用了統(tǒng)一的視覺-語言對比損失,這讓其能夠同時(shí)利用圖像-文本、圖像-標(biāo)簽、視頻-文本和視頻-標(biāo)簽數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練。另外,文章中提出了一個(gè)解耦地聯(lián)合訓(xùn)練范式,將視覺-語言建模解耦為空間和時(shí)間兩個(gè)維度,從而同時(shí)提高了在圖像和視頻任務(wù)的性能。

在這篇工作僅僅在CC12M和WebVid-2.5M這類相對小規(guī)模的數(shù)據(jù)上進(jìn)行預(yù)訓(xùn)練,隨著LAION、WebVid-10M的問世,可以在更大規(guī)模的數(shù)據(jù)上訓(xùn)練更大的模型,以探索具有更強(qiáng)零樣本、小樣本能力的模型。另外一個(gè)值得探索的方向是結(jié)合更豐富的有標(biāo)簽數(shù)據(jù)和更優(yōu)的監(jiān)督目標(biāo),使得模型可以支持細(xì)粒度的任務(wù)如物體檢測、追蹤等,從而朝著通用的統(tǒng)一模型更上一層臺階。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1094

    瀏覽量

    41243
  • 圖像分類
    +關(guān)注

    關(guān)注

    0

    文章

    96

    瀏覽量

    12166

原文標(biāo)題:NeurIPS 2022 | 復(fù)旦&微軟提出?OmniVL:首個(gè)統(tǒng)一圖像、視頻、文本的基礎(chǔ)預(yù)訓(xùn)練模型

文章出處:【微信號:CVer,微信公眾號:CVer】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    新知|Verizon與AT&T也可以手機(jī)直接連接衛(wèi)星了

    近日,Verizon與AT&T宣布,手機(jī)直連衛(wèi)星方面取得重要進(jìn)展,使用普通手機(jī)實(shí)現(xiàn)了通過衛(wèi)星的視頻通話。很顯然,Verizon與AT&T的這舉措是針對此前T-Mobi
    的頭像 發(fā)表于 06-19 07:07 ?457次閱讀
    新知|Verizon與AT&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;T也可以手機(jī)直接連接衛(wèi)星了

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    ,使用PaddleNLP將FineWeb數(shù)據(jù)集中文本形式的數(shù)據(jù),經(jīng)過分詞化(Tokenize),轉(zhuǎn)換為大語言模型能直接使用的二進(jìn)制數(shù)據(jù),以便提升訓(xùn)練效果。 ChatGPT發(fā)布后,當(dāng)代大語言模型
    的頭像 發(fā)表于 03-21 18:24 ?1669次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    從Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無法導(dǎo)入名稱是怎么回事?

    從 Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以將 FastSeg 大型模型轉(zhuǎn)換為中間表示 (IR): pyth
    發(fā)表于 03-05 07:22

    使用OpenVINO?訓(xùn)練擴(kuò)展對水平文本檢測模型進(jìn)行微調(diào),收到錯(cuò)誤信息是怎么回事?

    已針對水平文本檢測模型運(yùn)行OpenVINO?訓(xùn)練擴(kuò)展中的 微調(diào) 步驟,并收到錯(cuò)誤消息: RuntimeError: Failed to find annotation files
    發(fā)表于 03-05 06:48

    用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    手把手教您如何在單張消費(fèi)級顯卡上,利用PaddleNLP實(shí)踐OpenAI的GPT-2模型預(yù)訓(xùn)練。GPT-2的預(yù)訓(xùn)練關(guān)鍵技術(shù)與流程與GPT-
    的頭像 發(fā)表于 02-19 16:10 ?995次閱讀
    用PaddleNLP在4060單卡上實(shí)踐大<b class='flag-5'>模型</b><b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    文詳解視覺語言模型

    視覺語言模型(VLM)是種多模態(tài)、生成式 AI 模型,能夠理解和處理視頻、圖像文本。
    的頭像 發(fā)表于 02-12 11:13 ?1757次閱讀
    <b class='flag-5'>一</b>文詳解視覺語言<b class='flag-5'>模型</b>

    騰訊公布大語言模型訓(xùn)練新專利

    大語言模型訓(xùn)練過程中引入第摘要文本和第二摘要文本,為模型提供了更為豐富的學(xué)習(xí)信息。這兩個(gè)摘要
    的頭像 發(fā)表于 02-10 09:37 ?406次閱讀

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗(yàn)】+大模型微調(diào)技術(shù)解讀

    今天學(xué)習(xí)&amp;lt;基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化&amp;gt;這本書。大模型微調(diào)是深度學(xué)習(xí)領(lǐng)域中的項(xiàng)關(guān)鍵技術(shù),它指的是在已經(jīng)
    發(fā)表于 01-14 16:51

    KerasHub統(tǒng)一、全面的預(yù)訓(xùn)練模型

    深度學(xué)習(xí)領(lǐng)域正在迅速發(fā)展,在處理各種類型的任務(wù)中,預(yù)訓(xùn)練模型變得越來越重要。Keras 以其用戶友好型 API 和對易用性的重視而聞名,始終處于這動(dòng)向的前沿。Keras 擁有專用的內(nèi)
    的頭像 發(fā)表于 12-20 10:32 ?498次閱讀

    北美運(yùn)營商AT&amp;amp;amp;T認(rèn)證中的VoLTE測試項(xiàng)

    。以下是對AT&amp;T認(rèn)證中VoLTE測試項(xiàng)的詳細(xì)歸納:、基本測試要求AT&amp;T10776測試:這是項(xiàng)重要的測試要求,旨在確保終端單元(TU)和附件技術(shù)驗(yàn)收(TA)過程的
    的頭像 發(fā)表于 12-06 16:52 ?601次閱讀
    北美運(yùn)營商AT&<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;T認(rèn)證中的VoLTE測試項(xiàng)

    什么是大模型、大模型是怎么訓(xùn)練出來的及大模型作用

    ,基礎(chǔ)模型。 ? 大模型個(gè)簡稱,完整的叫法,應(yīng)該是“人工智能預(yù)訓(xùn)練模型”。
    的頭像 發(fā)表于 11-25 09:29 ?1.3w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓(xùn)練</b>出來的及大<b class='flag-5'>模型</b>作用

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語言模型(LLM)是個(gè)復(fù)雜且資源密集的過程,涉及到大量的數(shù)據(jù)、計(jì)算資源和專業(yè)知識。以下是訓(xùn)練LLM模型
    的頭像 發(fā)表于 11-08 09:30 ?1512次閱讀

    AI大模型訓(xùn)練數(shù)據(jù)來源分析

    學(xué)術(shù)機(jī)構(gòu)、政府組織或企業(yè)公開發(fā)布,涵蓋了各種類型的數(shù)據(jù),如圖像、文本、音頻、視頻等。例如: ImageNet :個(gè)廣泛用于圖像識別任務(wù)的大
    的頭像 發(fā)表于 10-23 15:32 ?3655次閱讀

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    鷺島論壇數(shù)據(jù)智能系列講座第4期「預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)」10月30日(周三)20:00精彩開播期待與您云相聚,共襄學(xué)術(shù)盛宴!|直播信息報(bào)告題目預(yù)
    的頭像 發(fā)表于 10-18 08:09 ?590次閱讀
    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)<b class='flag-5'>模型</b>下的持續(xù)學(xué)習(xí)

    onsemi LV/MV MOSFET 產(chǎn)品介紹 &amp;amp;amp; 行業(yè)應(yīng)用

    系列MOSFET介紹。4.onsemiLV/MVMOSFET市場&amp;應(yīng)用。技術(shù)亮點(diǎn)onsemi最新代T10系列MOSFET優(yōu)勢&amp;市場前景。學(xué)習(xí)收獲期望了解onsemiSi
    的頭像 發(fā)表于 10-13 08:06 ?908次閱讀
    onsemi LV/MV MOSFET 產(chǎn)品介紹 &<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>;<b class='flag-5'>amp</b>; 行業(yè)應(yīng)用