一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

盡可能地降低 SiC FET 的電磁干擾和開關(guān)損耗

Qorvo半導(dǎo)體 ? 來源:未知 ? 2023-05-29 21:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

您如何在提高開關(guān)速度和增加設(shè)計復(fù)雜度之間尋求平衡?本博客文章將討論此類權(quán)衡考量,并提供了一種更高效的方法,有助于您克服設(shè)計挑戰(zhàn)并充分發(fā)揮 SiC 器件潛力。

這篇博客文章最初由 United Silicon Carbide (UnitedSiC) 發(fā)布,該公司于 2021 年 11 月加入 Qorvo 大家庭。UnitedSiC 是一家領(lǐng)先的碳化硅 (SiC) 功率半導(dǎo)體制造商,它的加入促使 Qorvo 將業(yè)務(wù)擴(kuò)展到電動汽車 (EV)、工業(yè)電源、電路保護(hù)、可再生能源和數(shù)據(jù)中心電源等快速增長的市場。

隨著人們對高效率、高功率密度和系統(tǒng)簡單性的需求不斷增長,碳化硅 (SiC) FET 因其較快的開關(guān)速度、較低的 RDS(on) 和較高的額定電壓,逐漸成為對電力工程師極具吸引力的選擇。

但是,SiC 器件較快的開關(guān)速度會導(dǎo)致更高的 VDS 尖峰和更長的振鈴持續(xù)時間,從而在高電流電平下引入了更多的 EMI。對于從事電動汽車和可再生能源等高功率應(yīng)用的工程師來說,如何在提高效率并充分發(fā)揮先進(jìn)技術(shù)潛力的同時,避免過于復(fù)雜的設(shè)計將會是一大難題。

b5730934-fe1f-11ed-90ce-dac502259ad0.png ?

什么是 VDS 尖峰和振鈴?

寄生電感是導(dǎo)致 VDS 尖峰和振鈴的根本原因。從 SiC MOSFET 的典型關(guān)斷波形(圖 1)可以看出,柵極-源極電壓 (VGS) 在 18V 至 0V 之間,關(guān)斷的漏極電流 (ID) 為 50A,且總線電壓 (VDS) 為 800V。由于 SiC MOSFET 具有更快的開關(guān)速度,所以會出現(xiàn)較高的 VDS 尖峰和較長的振鈴持續(xù)時間。較高的 VDS 尖峰會減少器件應(yīng)對閃電和負(fù)載突變等條件導(dǎo)致的電壓問題的裕量。較長的振鈴持續(xù)時間也會引入更多的 EMI。這種現(xiàn)象在高電流電平下更加明顯。

b5890c48-fe1f-11ed-90ce-dac502259ad0.png

圖 1:SiC 器件的較快開關(guān)速度所導(dǎo)致的關(guān)斷 VDS 尖峰和振鈴

傳統(tǒng)方法

抑制EMI 的常規(guī)解決方案就是使用高柵極電阻 (RG) 來降低電流變化率 (dI/dt)。但實際上,使用高 RG 會顯著增加開關(guān)損耗,進(jìn)而損失效率,所以在使用這種方法時,我們不得不在效率和 EMI 之間做出取舍。

另一種解決方案是減少電源回路中的雜散電感。但是,這需要重新設(shè)計PCB 布局,并需要使用尺寸更小、電感更低的封裝。此外,PCB 上能夠減小的電源回路面積是有限的,而且也需要遵守相關(guān)安全法規(guī)規(guī)定的最小間距和最小間隙。此外,更小巧的封裝還會導(dǎo)致熱性能降低。

我們還需要考慮濾波器,以幫助我們滿足EMI 要求并簡化系統(tǒng)權(quán)衡。除此之外,我們還可以使用控制方法來減少 EMI。例如,頻率抖動技術(shù)可通過擴(kuò)展電源的噪聲頻譜范圍來減少 EMI。

新方法

一個簡單的 RC 緩沖電路可以幫助克服設(shè)計挑戰(zhàn)并充分發(fā)揮 SiC 器件的潛力,是一種更為高效的解決方案。事實證明,這個簡單的解決方案可以在廣泛的負(fù)載范圍內(nèi)更高效地控制 VDS 尖峰并縮短振鈴持續(xù)時間,并實現(xiàn)可以忽略的關(guān)斷延遲。

得益于更快速的 dv/dt 和額外的 Cs,緩沖電路還具有更高的位移電流,從而可以減少關(guān)斷過渡期間的 ID 和 VDS 重疊。

可以通過雙脈沖測試 (DPT) 來證明緩沖電路的有效性。該測試采用了帶感性負(fù)載的半橋配置。高端和低端都使用相同的器件,VGS、VDS 和 ID 均從低端器件測量(圖 2)。

b5b0ad3e-fe1f-11ed-90ce-dac502259ad0.png

圖 2:半橋配置(頂部和底部使用相同的器件)

使用電流互感器 (CT) 測量器件和緩沖電路的電流。因此,測得的開關(guān)損耗包括器件開關(guān)損耗和緩沖電路損耗。

其中的緩沖電路由 SiC MOSFET 漏極和源極之間的一個 10Ω 電阻和一個 200pF 電容串聯(lián)組成。

b5c12f4c-fe1f-11ed-90ce-dac502259ad0.png

圖 3:RC 緩沖電路可更有效地控制關(guān)斷 EMI

首先,我們比較關(guān)斷時的情況(圖3)。測試的設(shè)備對象與圖 1 相同。左側(cè)波形使用 RC 緩沖電路和低 RG(off),而右側(cè)波形則使用高 RG(off),未使用緩沖電路。這兩種方法都可以限制關(guān)斷 VDS 峰值電壓。但是,使用緩沖電路之后,只需 33ns 即可抑制振鈴,而高 RG(off) 的振鈴持續(xù)時間仍超過 100ns。與使用高 RG(off) 相比,使用緩沖電路時的延遲時間更短。由此可判斷,緩沖電路有助于在關(guān)斷時更有效地控制 VDS 關(guān)斷尖峰和振鈴持續(xù)時間。

b5e24402-fe1f-11ed-90ce-dac502259ad0.png

圖 4:RC 緩沖電路在導(dǎo)通期間的有效性

在導(dǎo)通時(圖4),將使用 RC 緩沖電路和 5Ω RG(on) 的波形與未使用緩沖電路的波形進(jìn)行比較可以發(fā)現(xiàn),使用緩沖電路時,反向恢復(fù)電流峰值 (Irr) 略有提高,從 94A 提高到了 97A,除此之外,其對導(dǎo)通波形的影響可以忽略不計。

這表明,與高 RG(off) 相比,緩沖電路有助于更有效地控制 VDS 尖峰和振鈴持續(xù)時間。但緩沖電路能否更高效呢?(圖 5

b600f262-fe1f-11ed-90ce-dac502259ad0.png

圖 5:比較緩沖電路與高 RG(off) 之間的開關(guān)損耗(Eoff、Eon)

在 48A 時,高 RG(off) 的關(guān)斷開關(guān)損耗是使用緩沖電路和低 RG(off) 時的兩倍以上。由此證明,緩沖電路在關(guān)斷時更高效。因為緩沖電路可實現(xiàn)更快速的開關(guān),同時還可以更好地控制 VDS 尖峰和振鈴。

從導(dǎo)通開關(guān)損耗的角度看,使用緩沖電路時,Eon 平均增加了 70μJ。為了充分估計整體效率,我們需要將 Eoff 和 Eon 相加,然后比較 Etotal(圖 6)。在全速開關(guān)器件時,可以很明顯地看出緩沖電路在漏級電流為 18A 以上時效率更高。對于在 40A/40kHz 下開關(guān)的 40mΩ 器件,在使用高 RG(off) 與使用低 RG(off) 和緩沖電路之間,每個器件的開關(guān)損耗差為 11W。

b5730934-fe1f-11ed-90ce-dac502259ad0.png

圖 6:比較緩沖電路與高 RG(off) 之間的開關(guān)損耗 (Etotal)

因此我們可以推斷,與使用高 RG(off) 相比,使用緩沖電路是一種更高效的解決方案。

隨著第 4 代 SiC 器件進(jìn)入市場,這種簡單的設(shè)計解決方案將繼續(xù)提供更低的總開關(guān)損耗,繼續(xù)幫助優(yōu)化系統(tǒng)功率效率。

關(guān)于簡單的緩沖電路如何在 UnitedSiC SiC 器件中實現(xiàn)出色效率的更多信息,請觀看我們近期的研討會:盡可能地降低 SiC FET 的電磁干擾和開關(guān)損耗。

您可以點擊此處https://unitedsic.com/events/webinar-minimizing-emi-and-switching-loss-for-fast-sic-fets/觀看完整的研討會。


原文標(biāo)題:盡可能地降低 SiC FET 的電磁干擾和開關(guān)損耗

文章出處:【微信公眾號:Qorvo半導(dǎo)體】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Qorvo
    +關(guān)注

    關(guān)注

    17

    文章

    696

    瀏覽量

    78708

原文標(biāo)題:盡可能地降低 SiC FET 的電磁干擾和開關(guān)損耗

文章出處:【微信號:Qorvo_Inc,微信公眾號:Qorvo半導(dǎo)體】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    電源功率器件篇:線路寄生電感對開關(guān)器件的影響

    時間的延長會導(dǎo)致開關(guān)損耗增加,不僅會降低電源系統(tǒng)的效率,還會使開關(guān)器件發(fā)熱嚴(yán)重。 3、 引發(fā)電磁干擾(EMI) 高頻
    發(fā)表于 07-02 11:22

    SiC MOSFET計算損耗的方法

    本文將介紹如何根據(jù)開關(guān)波形計算使用了SiC MOSFET的開關(guān)電路中的SiC MOSFET的損耗。這是一種在線性近似的有效范圍內(nèi)對
    的頭像 發(fā)表于 06-12 11:22 ?1333次閱讀
    <b class='flag-5'>SiC</b> MOSFET計算<b class='flag-5'>損耗</b>的方法

    時源芯微 開關(guān)電源電磁干擾的控制技術(shù)

    要有效解決開關(guān)電源的電磁干擾問題,可從以下三個關(guān)鍵方面著手:其一,降低干擾源產(chǎn)生的干擾信號強(qiáng)度;
    的頭像 發(fā)表于 05-20 16:50 ?209次閱讀
    時源芯微 <b class='flag-5'>開關(guān)</b>電源<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>的控制技術(shù)

    芯干線GaN/SiC功率器件如何優(yōu)化開關(guān)損耗

    在功率器件的世界里,開關(guān)損耗是一個繞不開的關(guān)鍵話題。
    的頭像 發(fā)表于 05-07 13:55 ?437次閱讀

    SiC MOSFET 開關(guān)模塊RC緩沖吸收電路的參數(shù)優(yōu)化設(shè)計

    (高一個數(shù)量級),在開關(guān)模塊關(guān)斷瞬間,由母排寄生電感和開關(guān)模塊寄生電容引起的關(guān)斷尖峰電壓更高。關(guān)斷過電壓不僅給開關(guān)模塊帶來更大的電壓應(yīng)力,縮短模塊工作壽命,而且會給系統(tǒng)帶來更大的損耗
    發(fā)表于 04-23 11:25

    麥科信光隔離探頭在碳化硅(SiC)MOSFET動態(tài)測試中的應(yīng)用

    異的高溫和高頻性能。 案例簡介:SiC MOSFET 的動態(tài)測試可用于獲取器件的開關(guān)速度、開關(guān)損耗等關(guān)鍵動態(tài)參數(shù),從而幫助工程師優(yōu)化芯片設(shè)計和封裝。然而,由于 SiC MOSFET 具
    發(fā)表于 04-08 16:00

    如何降低開關(guān)電源空載損耗

    摘要: 在現(xiàn)在能源越來越緊張,是提倡電源管理和節(jié)省能量的時代,降低電源供應(yīng)器在待機(jī)時的電能消耗顯得越來越重要和緊迫。目前已經(jīng)有一些可以降低開關(guān)電源供應(yīng)器在極輕載或無載時的功率損耗,和其
    發(fā)表于 03-17 15:25

    基于LTSpice的GaN開關(guān)損耗的仿真

    基于LTSpice的GaN開關(guān)損耗的仿真
    的頭像 發(fā)表于 03-13 15:44 ?1057次閱讀
    基于LTSpice的GaN<b class='flag-5'>開關(guān)損耗</b>的仿真

    MOSFET開關(guān)損耗和主導(dǎo)參數(shù)

    本文詳細(xì)分析計算開關(guān)損耗,并論述實際狀態(tài)下功率MOSFET的開通過程和自然零電壓關(guān)斷的過程,從而使電子工程師知道哪個參數(shù)起主導(dǎo)作用并更加深入理解MOSFET。 MOSFET開關(guān)損耗 1 開通
    發(fā)表于 02-26 14:41

    采用 MPS SiC 二極管最大程度地降低高頻開關(guān)模式電源的損耗

    (Si) 二極管而言,這些開關(guān)損耗來自二極管關(guān)斷時二極管結(jié)內(nèi)存儲的電荷產(chǎn)生的反向恢復(fù)電流。要將這些損耗降到最低,通常需要一個具有更高平均正向電流的 Si 二極管,但這會導(dǎo)致更大的尺寸和更高的成本。 在 CCM PFC 電路中,碳化硅 (
    的頭像 發(fā)表于 01-26 22:27 ?743次閱讀
    采用 MPS <b class='flag-5'>SiC</b> 二極管最大程度地<b class='flag-5'>降低</b>高頻<b class='flag-5'>開關(guān)</b>模式電源的<b class='flag-5'>損耗</b>

    影響MOSFET開關(guān)損耗的因素

    MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金屬-氧化物半導(dǎo)體場效應(yīng)晶體管)的開關(guān)損耗是電子工程中一個關(guān)鍵的性能參數(shù),它直接影響到電路的效率、熱設(shè)計和可靠性。下面將詳細(xì)闡述MOSFET開關(guān)損耗的概念、組
    的頭像 發(fā)表于 09-14 16:11 ?1677次閱讀

    低噪聲放大器的第一級放大電路要盡可能的放大,為什么?

    為什么低噪聲放大器的第一級放大電路要盡可能的放大?
    發(fā)表于 08-30 07:40

    為了盡可能的消除模擬開關(guān)的影響,xtr105的電壓至少需要多少伏?

    開關(guān),那么RZ,Rg應(yīng)該怎么確定阻值,模擬開關(guān)應(yīng)該算進(jìn)線路電阻中嗎?。為了盡可能的消除模擬開關(guān)的影響,xtr105的電壓至少需要多少伏?Q1選擇除了datasheet中給的三個選項有可
    發(fā)表于 08-26 06:27

    差分探頭在測量開關(guān)損耗中的應(yīng)用

    開關(guān)損耗是電力電子設(shè)備中的一個重要性能指標(biāo),它直接影響到設(shè)備的效率和熱管理。差分探頭作為一種高精度的測量工具,在開關(guān)損耗的測量中發(fā)揮著關(guān)鍵作用。本文將介紹差分探頭的基本原理,探討其在開關(guān)損耗測量中
    的頭像 發(fā)表于 08-09 09:47 ?604次閱讀
    差分探頭在測量<b class='flag-5'>開關(guān)損耗</b>中的應(yīng)用

    零電壓開關(guān)與零電流開關(guān)的區(qū)別

    零電壓開關(guān)(Zero Voltage Switch, ZVS)和零電流開關(guān)(Zero Current Switch, ZCS)是電力電子技術(shù)中兩種重要的軟開關(guān)技術(shù),它們在提高系統(tǒng)效率、降低
    的頭像 發(fā)表于 07-25 11:18 ?5864次閱讀