一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種全新的視角去理解和處理地圖矢量化的任務(wù)

黑芝麻智能 ? 來源:黑芝麻智能 ? 2023-06-27 16:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

黑芝麻智能的科研團隊在最新公開的論文中提出兩點創(chuàng)新:一是建立了一種更加準(zhǔn)確和合理的基于柵格化的“矢量化高精地圖構(gòu)建”的評價指標(biāo);二是推出了 MapVR,一個受益于柵格化視角的更精準(zhǔn)的“矢量化高精地圖構(gòu)建”的框架。

引言

自動駕駛領(lǐng)域,BEV感知能為自動駕駛感知任務(wù)提供有效的時空表征方法,將成為車載感知的主流發(fā)展方向,能在多樣而復(fù)雜的駕駛場景中都能穩(wěn)定地構(gòu)建高質(zhì)量的矢量化高精地圖(vectorized HD map),對于BEV感知能力的提升至關(guān)重要。它能為環(huán)境感知提供重要的高層級語義信息。然而,現(xiàn)有的矢量化高精地圖構(gòu)建方法往往存在一些偏差,現(xiàn)有的評估指標(biāo)對于這些偏差的敏感度卻不足。這在對精度要求極高的自動駕駛場景中,可能帶來安全隱患。因此,我們需要更有效的地圖矢量化方法和更敏感的評估指標(biāo),以提高地圖構(gòu)建的準(zhǔn)確性,滿足自動駕駛的嚴(yán)格要求。

為應(yīng)對這一挑戰(zhàn),黑芝麻智能的科研團隊與新加坡南洋理工大學(xué)的研究者們在最新公開的論文中提出了一個新觀點:在“矢量化高精度地圖構(gòu)建”任務(wù)中,應(yīng)當(dāng)引入柵格化(rasterization)的視角?;谶@一動機,他們提出了兩點創(chuàng)新:一是建立了一種更加準(zhǔn)確和合理的基于柵格化的“矢量化高精地圖構(gòu)建”的評價指標(biāo);二是推出了 MapVR(Map Vectorization via Rasterization),一個受益于柵格化視角的更精準(zhǔn)的“矢量化高精地圖構(gòu)建”的框架。

在接下來的內(nèi)容中,我們將深入介紹此研究的背景,所提出的評價指標(biāo)和 MapVR 的細(xì)節(jié),以及討論如何利用柵格化來提高矢量化高精地圖的精準(zhǔn)度和實用性。

背景

在線高精度地圖構(gòu)建是指利用車載傳感器(如攝像頭)的輸入,實時構(gòu)建自車周圍地圖(包含車道線、道路邊沿、人行橫道、泊車位等)的任務(wù)?,F(xiàn)有的在線高精度地圖構(gòu)建方法主要分為兩大模式:地圖柵格化(map rasterization)和地圖矢量化(map vectorization)。地圖柵格化相對簡單直觀,它將周圍環(huán)境在鳥瞰視圖(Bird's-eye View,BEV)中建模為語義分割任務(wù),將分割結(jié)果作為輸出的柵格化地圖。然而,這種柵格化的地圖并非適用于自動駕駛應(yīng)用的理想表達(dá)形式,因為它難以區(qū)分不同地圖元素,無法提供結(jié)構(gòu)信息,因而需要進行大量的后處理才能供下游任務(wù)使用。為解決這些問題,地圖矢量化方法應(yīng)運而生,成為實時構(gòu)建高精地圖的熱門方案。最新的地圖矢量化方法,例如VectorMapNet和MapTR,使用有序點集來表征各個地圖元素,直接回歸每個地圖元素的一系列點坐標(biāo),實現(xiàn)了更準(zhǔn)確的結(jié)果和更快的運行速度。

然而,最新方法在實踐中常常表現(xiàn)得不盡如人意,原因主要有三。首先,如下圖所示,稀疏點集的表征方式在處理地圖結(jié)構(gòu)的尖銳彎曲或復(fù)雜細(xì)節(jié)時,精度不足,會導(dǎo)致明顯的參數(shù)化誤差。第二,將等距離的點集作為回歸目標(biāo)時,中間的點會缺乏清晰的視覺線索。這會導(dǎo)致監(jiān)督信號的模糊性,使得學(xué)習(xí)過程變得困難。再者,單純依賴點集間的L1損失進行回歸監(jiān)督,往往會忽視細(xì)粒度的特征,導(dǎo)致預(yù)測結(jié)果過于平滑,模型對微小的變化不敏感。

同樣地,當(dāng)前的評價指標(biāo)也是基于點集之間的Chamfer距離,這種方式也容易忽視微小的偏差和幾何細(xì)節(jié)。

總而言之,針對自動駕駛這樣對精度要求苛刻的場景,我們認(rèn)識到現(xiàn)有的地圖矢量化方法和評價指標(biāo)仍有很大不足。為了滿足真實駕駛場景的需求,業(yè)界和學(xué)術(shù)界都應(yīng)采用更高精度、更面向業(yè)務(wù)的評估指標(biāo)和方法。

動機

為了解決上述問題,我們嘗試了一個新的思路——在地圖矢量化任務(wù)中引入柵格化(rasterization)的視角。柵格化的表達(dá)方式有其獨特的優(yōu)勢,它與人類對環(huán)境的感知模式更為相符,能提供更為詳細(xì)和直觀的信息。

然而,如何將這一思路有效地融合到地圖矢量化中,以提升精度和實用性,無疑是一項挑戰(zhàn)。我們希望,通過引入柵格化視角,能夠在方法和評價指標(biāo)上均更準(zhǔn)確地捕捉到地圖的細(xì)節(jié)和結(jié)構(gòu),提升地圖矢量化的精度,同時還能保留其矢量化的優(yōu)勢,使其更適合自動駕駛的各種下游任務(wù)。

基于柵格化的地圖矢量化評價指標(biāo)

1.回顧現(xiàn)有的評價指標(biāo)

現(xiàn)有的評價指標(biāo)使用Chamfer距離來確定預(yù)測的地圖元素和真實的地圖元素是否匹配。Chamfer距離是一種衡量兩個無序點集之間不相似性的量,它量化了一個集合中每個點到另一個集合中最近點的平均距離,可以用公式表達(dá)為:

ad0f60ca-100e-11ee-962d-dac502259ad0.png

盡管它簡單且能給出大致合理的評價結(jié)果,但這一指標(biāo)的以下缺陷使得其在如自動駕駛等對精度要求極高的場景中顯得不足:首先,它不具備尺度不變性,對于較小的地圖元素(如停車線),Chamfer距離無論預(yù)測是否準(zhǔn)確都會很小,無法提供有意義的評價。其次,Chamfer距離僅依賴于無序點集的距離,完全忽視了地圖元素的形狀和幾何特性,因此對許多實際駕駛場景會產(chǎn)生不合理的評價。

2.更精準(zhǔn)與合理的基于柵格化的評價指標(biāo)

為了解決上述限制,我們提出了一種基于柵格化的評價指標(biāo),該指標(biāo)對細(xì)微偏差更敏感,并更適合真實的駕駛場景。在此指標(biāo)中,我們采用柵格化來準(zhǔn)確地確定預(yù)測的地圖元素和真實地圖元素的匹配。

ad2388ac-100e-11ee-962d-dac502259ad0.png

如上圖所示,我們使用線形的地圖元素(例如,車道線和泊車線等)來示例我們的評價指標(biāo)。首先,目標(biāo)地圖元素和預(yù)測的地圖元素都被柵格化(rasterization)為一條折線。柵格化后的圖像分辨率應(yīng)較高(例如,柵格化后的每個像素代表現(xiàn)實中的0.1米),以保證評價的精準(zhǔn)性。然后,為了使我們的評價指標(biāo)能對細(xì)長的折線的輕微偏移有一定的容忍度,我們將柵格化的折線在每側(cè)膨脹(dilate)2個像素。最后,我們計算柵格化的預(yù)測和目標(biāo)之間的交并比(IoU)以判斷其是否匹配。與MS-COCO目標(biāo)檢測的的評價指標(biāo)指標(biāo)類似,我們在多個IoU閾值下計算Average Precision(AP)。

值得注意的是,地圖通常還包含除線形之外的元素,如人行橫道,交叉路口和停車位等。這些地圖元素都可以被抽象為多邊形。在對此類地圖元素進行評價時,我們采用類似的方法計算AP,但不同的是,我們將其柵格化為多邊形,而非折線,以更合理地進行評價。

3. 兩種指標(biāo)的評價質(zhì)量

我們以下圖所示的一些實例來對比兩種評價指標(biāo)的評價質(zhì)量。紅色代表Ground Truth,藍(lán)色代表預(yù)測結(jié)果。一般來說,Chamfer距離小于1.0即可認(rèn)為匹配,而mIoU大于0.35才可認(rèn)為匹配。

ad4d0a74-100e-11ee-962d-dac502259ad0.png

(a)所示的是一條較短的停車線。由于Chamfer距離缺乏尺度不變性,對于這種較小的地圖元素,Chamfer距離都會誤判為匹配。而我們提出的基于柵格化的指標(biāo)判斷更為合理。

(b)所示的車道線預(yù)測出現(xiàn)了輕微的橫向偏移。在實際駕駛場景中,即使是輕微的橫向偏移也可能帶來重大危險。由于Chamfer距離僅依賴于點集間的距離,缺乏對形狀和幾何細(xì)節(jié)的理解,因此它認(rèn)定預(yù)測和Ground Truth匹配。然而,我們提出的基于柵格化的評價指標(biāo)在確定匹配的過程中考慮了幾何信息,因此能正確地識別出預(yù)測和Ground Truth之間的差異,判定兩者不匹配。

(c)所示車道線的預(yù)測出現(xiàn)了輕微的縱向偏移。這種偏移通常是由于遮擋現(xiàn)象造成的,在實際的自動駕駛場景中,其風(fēng)險并不大。因為隨著車輛的移動,地圖會持續(xù)更新。由于我們所提出的基于柵格化的評價指標(biāo)考慮了地圖元素的形狀和幾何信息,因此能夠?qū)@種情況給出更為合理的評估。

(d)所示的情況也能說明,我們提出的指標(biāo)對微小的偏差更為敏感。

基于柵格化的地圖矢量化評價指標(biāo)

本文還提出了一個新型的地圖矢量化框架——MapVR。這是一個通用框架,不涉及網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計,因此可以與其他地圖矢量化的網(wǎng)絡(luò)模型共同使用,如最新的MapTR。

ad9c8112-100e-11ee-962d-dac502259ad0.png

相對于當(dāng)前的地圖矢量化方法,MapVR在訓(xùn)練過程中采用了一種獨特的技巧。它將矢量化的輸出(即地圖元素的有序點集)進行可微分的柵格化處理,將每個矢量化的地圖元素渲染成一張具有高分辨率的分割掩碼。然后,我們將在這些渲染后的高分辨率分割掩碼上進行分割監(jiān)督。這個思路與我們之前提到的評估指標(biāo)是一致的,它能夠提供更精確、更詳細(xì)、并包含了幾何形狀先驗的監(jiān)督,這將顯著提升地圖構(gòu)建的精度。此外,MapVR還能夠提供更合理的監(jiān)督。在現(xiàn)有的地圖矢量化方法中,我們通常會回歸等間距的點作為目標(biāo),但這常常會在缺乏明顯視覺線索的中間部分的點帶來模糊性。MapVR的出現(xiàn),有效地解決了這個問題。

adcc6b0c-100e-11ee-962d-dac502259ad0.png

另外,地圖中經(jīng)常包含很多不能被抽象成線的元素,如人行橫道、十字路口、停車位等。這些元素更適合被抽象為多邊形。如上圖所示,我們也對這些多邊形地圖元素設(shè)計了可微分柵格化的策略。具體的柵格化公式請讀者參閱論文。

值得一提的是,MapVR額外引入的柵格化步驟僅需在訓(xùn)練時使用。在推理階段,我們可以簡單地去掉額外的可微分柵格化步驟,直接使用網(wǎng)絡(luò)的矢量化輸出作為最終的結(jié)果。因此,MapVR在推理階段并不會引入任何額外的計算負(fù)擔(dān)。這意味著我們的方法在保持高效率的同時,還能夠提供更準(zhǔn)確、更穩(wěn)健的地圖構(gòu)建結(jié)果。

此外,由于MapVR所提出的監(jiān)督方式很大程度上消除了之前方法的“等距離目標(biāo)點”的要求,我們還引入了一個額外的損失函數(shù)作用于正則化預(yù)測的折現(xiàn)之間的夾角。這能鼓勵網(wǎng)絡(luò)輸出更加平滑的地圖元素,同時在轉(zhuǎn)彎處得到更加精力的結(jié)果。該正則項可用公式表示為:

adf2d544-100e-11ee-962d-dac502259ad0.png

在論文中,我們也通過實驗證實了該正則項的有效性。

實驗結(jié)果

在論文中,作者將所提出的方法在4個數(shù)據(jù)集上進行了充分的實驗。MapVR無論在現(xiàn)有的評價指標(biāo)上,還是在論文中提出的新的指標(biāo)上,都取得了最佳的性能。有關(guān)具體的量化實驗結(jié)果和消融實驗結(jié)果,請讀者參閱論文。

如下圖所示比較了我們所提出的MapVR和現(xiàn)有的最佳基線方法——MapTR。我們可以觀察到,我們的方法能夠生成更加精確的矢量化高精地圖,尤其是在捕捉復(fù)雜的細(xì)節(jié)以及準(zhǔn)確呈現(xiàn)復(fù)雜或曲線形狀的地圖元素方面表現(xiàn)出色。相比之下,盡管MapTR方法可以產(chǎn)生大體正確的矢量化地圖,但在細(xì)節(jié)部分不可避免地會出現(xiàn)偏差,且在精確構(gòu)造復(fù)雜地圖元素上存在困難。這些結(jié)果證明了我們的方法的有效性。

ae186a66-100e-11ee-962d-dac502259ad0.png

ae56cda6-100e-11ee-962d-dac502259ad0.png

我們還對兩種方法在兩種評價指標(biāo)下的精確度-召回率曲線(Precision-Recall Curve)進行了比較。觀察可知,在未引入MapVR的情況下,MapTR基線在相對簡單的APchamfer指標(biāo)和嚴(yán)格的APraster指標(biāo)上存在較大的差距。這說明當(dāng)前的方法在捕捉地圖元素的細(xì)節(jié)方面確實存在不足。而當(dāng)引入MapVR后,這兩者的差距顯著縮小,并且性能都有所提升。

這證明了在地圖矢量化任務(wù)中引入柵格化的精細(xì)監(jiān)督確實能幫助模型提升性能,尤其是在捕捉更細(xì)節(jié)的部分上,證實了我們工作的有效性。

af89cc96-100e-11ee-962d-dac502259ad0.png

結(jié)語

本文提出了一種全新的視角去理解和處理地圖矢量化的任務(wù):通過柵格化,我們能夠更準(zhǔn)確地學(xué)習(xí)和評估地圖矢量化。我們發(fā)現(xiàn),雖然矢量化表示方式簡潔易用,但其在細(xì)節(jié)表示能力上存在不足;因此,有必要在學(xué)習(xí)和評估中引入柵格化作為補充。我們希望我們的視角能夠為地圖矢量化的進一步創(chuàng)新提供基礎(chǔ),最終促進安全可靠的自動駕駛技術(shù)的發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 矢量
    +關(guān)注

    關(guān)注

    0

    文章

    97

    瀏覽量

    24116
  • 柵格
    +關(guān)注

    關(guān)注

    0

    文章

    13

    瀏覽量

    11350
  • 自動駕駛
    +關(guān)注

    關(guān)注

    790

    文章

    14321

    瀏覽量

    170690

原文標(biāo)題:開芯課堂丨使用柵格化視角優(yōu)化BEV算法中矢量化場景構(gòu)建

文章出處:【微信號:BlackSesameTech,微信公眾號:黑芝麻智能】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    什么是CAD矢量化

    在使用浩辰CAD制圖軟件進行繪圖的過程中,經(jīng)常需要進行CAD矢量化操作,可能有些小伙伴不是很清楚什么是CAD矢量化,接下來給大家詳細(xì)介紹下吧!CAD矢量化是什么意思?
    發(fā)表于 03-06 17:02

    使用SVE對HACCmk進行矢量化的案例研究

    :23:錯過:未矢量化:循環(huán)中的控制流。這段代碼是個很好的例子,SVE 中的預(yù)測可以增加向量化的機會。謂詞允許在向量中按元素處理條件語句。換句話說,使用 SVE 可以計算
    發(fā)表于 11-08 11:50

    RealView編譯工具NEON矢量化編譯器指南

    RVCT提供了armcc--Vectorize,這是ARM編譯器的矢量化版本,它以帶有neon單元的ARM處理器為目標(biāo),比如Cortex-A8。 向量化意味著編譯器直接從C或C++
    發(fā)表于 08-12 06:22

    一種優(yōu)化的鞋樣圖像矢量化方法

    針對制鞋業(yè)中鞋樣的錄入問題,提出了一種實現(xiàn)從圖像格式到圖形格式轉(zhuǎn)化的圖像矢量化方法。并且形成的圖形文件可根據(jù)不同鞋業(yè)CAD 軟件的要求而存儲成相應(yīng)的格式。該方法還
    發(fā)表于 08-13 15:24 ?18次下載

    MAPGIS矢量化技巧步驟詳解

    利用MapGis進行屏幕跟蹤矢量化 > 1.利用MAPGIS矢量化作圖。
    發(fā)表于 10-21 15:45 ?0次下載

    阿郎“零接觸矢量化”技術(shù)實現(xiàn)寬帶服務(wù)提速

    10月17日,阿爾卡特朗訊日前推出“零接觸矢量化”創(chuàng)新技術(shù)。依托這全新VDSL2矢量化技術(shù),能經(jīng)濟高效地為千家萬戶實現(xiàn)寬帶服務(wù)提速。
    發(fā)表于 10-17 11:26 ?1192次閱讀

    英特爾Advisor的矢量化工作流程

    本入門視頻介紹了英特爾?Advisor的矢量化工作流程。
    的頭像 發(fā)表于 11-01 06:27 ?4210次閱讀

    第2部分:高級代碼矢量化和優(yōu)化

    從Serial到Awesome,第2部分:高級代碼矢量化和優(yōu)化
    的頭像 發(fā)表于 05-31 11:39 ?2543次閱讀

    使用線程和矢量化將串行代碼轉(zhuǎn)換為并行

    軟件必須是并行和矢量化的,以充分利用今天和明天的硬件。但并非所有線程或矢量化設(shè)計都值得。工具可以非常有助于確定可以(并且應(yīng)該)并行化和允許的內(nèi)容
    的頭像 發(fā)表于 11-07 06:47 ?3079次閱讀

    矢量化的優(yōu)點和數(shù)據(jù)大小的影響

    矢量化的優(yōu)點和數(shù)據(jù)大小的影響
    的頭像 發(fā)表于 11-15 06:36 ?6278次閱讀

    矢量化數(shù)據(jù)并行性的程序方面的作用

    矢量化在加速具有算法固有的數(shù)據(jù)并行性的程序方面起著至關(guān)重要的作用。 英特爾C ++編譯器提供了顯式的矢量編程方法,以提高性能。
    的頭像 發(fā)表于 11-06 06:31 ?2518次閱讀

    矢量化或性能模具:調(diào)整最新的AVX SIMD指令

    英特爾?Advisor可以優(yōu)先考慮用于矢量化的循環(huán),為您提供關(guān)鍵的優(yōu)化數(shù)據(jù),并幫助優(yōu)化新的指令集。 學(xué)習(xí)如何。
    的頭像 發(fā)表于 11-05 06:37 ?4073次閱讀

    一種基于多任務(wù)聯(lián)合訓(xùn)練的閱讀理解模型

    理解能力。為此,提岀一種基于多任務(wù)聯(lián)合訓(xùn)練的閱讀理解模型,該模型是由組功能各異的神經(jīng)絡(luò)構(gòu)成的聯(lián)合學(xué)習(xí)模型,其仿效人們推理和回答冋題的基本
    發(fā)表于 03-16 11:41 ?10次下載
    <b class='flag-5'>一種</b>基于多<b class='flag-5'>任務(wù)</b>聯(lián)合訓(xùn)練的閱讀<b class='flag-5'>理解</b>模型

    基于結(jié)構(gòu)化建模的矢量高精地圖實時在線構(gòu)建方法—MapTR

    矢量高精地圖(vectorized high-definition map)是應(yīng)用于自動駕駛的高精度結(jié)構(gòu)化電子地圖,其由駕駛場景各類地圖要素(如人行橫道、車道線、路沿等)的
    的頭像 發(fā)表于 09-09 10:55 ?6132次閱讀

    基于矢量化場景表征的端到端自動駕駛算法框架

    在ICCV 2023上,地平線和華中科技大學(xué)提出基于矢量化場景表征的端到端自動駕駛算法——VAD。VAD擯棄了柵格化表征,對整個駕駛場景進行矢量化建模(如圖2),并利用矢量環(huán)境信息對自車規(guī)劃軌跡進行
    發(fā)表于 08-31 09:28 ?1695次閱讀
    基于<b class='flag-5'>矢量化</b>場景表征的端到端自動駕駛算法框架