我以前研究過一段時間的OpenMV的源碼,當(dāng)時的功力太淺,看不大懂,現(xiàn)在又重新的翻出來看。
先確定代碼在哪里,OpenMV是在資源受限的情況下執(zhí)行視覺算法,所以里面的很多寫法都是高效的,被優(yōu)化過的,這也是我讀的一個原因。
第一先讀第一個文件,是一個角點(diǎn)的快速查找算法。圖像基礎(chǔ)的操作都被封裝在了我現(xiàn)在展示的這個文件里面。
什么是角點(diǎn)?
角點(diǎn)通常被定義為兩條邊的交點(diǎn),或者說,角點(diǎn)的局部鄰域應(yīng)該具有兩個不同區(qū)域的不同方向的邊界。角點(diǎn)檢測(Corner Detection)是計算機(jī)視覺系統(tǒng)中獲取圖像特征的一種方法,廣泛應(yīng)用于運(yùn)動檢測、圖像匹配、視頻跟蹤、三維重建和目標(biāo)識別等,也可稱為特征點(diǎn)檢測。
這張圖可以說是非常的簡單明了。
角點(diǎn)的基本算法:選取一個局部窗口,將這個窗口沿著各個方向移動,計算移動前后窗口內(nèi)像素的差異的多少進(jìn)而判斷窗口對應(yīng)的區(qū)域是否是角點(diǎn)。
這個就是數(shù)學(xué)上的描述
我們尋找的角點(diǎn)就是去滑動判斷。
這個就是我說的常見操作被打包的地方
它提供了低級圖像處理操作的定義和函數(shù)。像素格式,基本圖像統(tǒng)計,濾波,邊緣檢測,形狀檢測,條碼識讀等。
它針對嵌入式設(shè)備和微控制器設(shè)計,側(cè)重效率和代碼體積小。
使用定點(diǎn)數(shù)代替浮點(diǎn)數(shù)。直接對原始像素緩沖區(qū)進(jìn)行操作。
支持常見的圖像格式,像BMP,PPM,JPEG等。以及基本的機(jī)器視覺功能,比如模板匹配,QR碼識讀。
有在圖像上繪制基本形狀,線條,文字等的函數(shù)。
在可用時使用DMA和SIMD指令做硬件加速。不可用時回退到C實(shí)現(xiàn)。
使用C語言編寫,但可以通過FFI在更高級語言如MicroPython或Arduino中使用。
OpenMV開源開發(fā),作為他們的機(jī)器視覺相機(jī)模塊的一部分。但可以獨(dú)立使用。
這個是要看的算法的函數(shù)
這個算法現(xiàn)在討論的很少,我就簡單的說下:自適應(yīng)通用角點(diǎn)檢測(Adaptive and Generic Accelerated Segment Test,AGAST)算法,該算法是對FAST算法的一種改進(jìn)主要提升了速度與亮度變化下的魯棒性,但沒有解決尺度不變性。
現(xiàn)在接著看代碼。上面的代碼里面大體是實(shí)現(xiàn)了:
init5_8_pattern() 函數(shù):
初始化像素橫豎方向偏移量,用于后續(xù)快速訪問周圍像素。
agast58_detect() 函數(shù):
使用5x5個像素組成的模板匹配算法掃描圖像,找到角點(diǎn)。
像素值大于或小于中心點(diǎn)像素值的偏移量編碼成一個64位的特征碼。
如果匹配了角點(diǎn)模板,記錄下角點(diǎn)坐標(biāo)。
agast58_score() 函數(shù):
使用二分法找到最佳的閾值,進(jìn)一步提高角點(diǎn)質(zhì)量。
周圍5x5像素值和該閾值進(jìn)行比較,如果匹配角點(diǎn)模板,說明是角點(diǎn)。
不斷調(diào)整閾值,找到使得匹配模板的像素數(shù)最多的閾值。
nonmax_suppression() 函數(shù):
應(yīng)用非極大值抑制進(jìn)一步提煉角點(diǎn)。
抑制掉像素梯度較小的不明顯角點(diǎn)。
alloc_keypoint() 函數(shù):
將檢測到的角點(diǎn)包裝成 keypoints 數(shù)據(jù)結(jié)構(gòu)。
第一次見這種寫法
該變量是用于儲存圖像像素的偏移量,用于快速訪問像素周圍的像素灰度值。
s_offset0 表示相對于當(dāng)前像素的左上方像素的偏移量。
具體來說:
s_offset0 表示相對于(x,y)的(x-1, y-1)像素
s_offset1 表示相對于(x,y)的(x-1, y)像素
s_offset2 表示相對于(x,y)的(x, y-1)像素
以此類推
通過預(yù)先計算好這些固定的偏移量,就可以通過 指針偏移 的方式,快速獲取周圍像素的值,而不需要每次都計算坐標(biāo)關(guān)系,從而提高效率。所以,這個 s_offset0 變量就是一個優(yōu)化手段,用來加速周圍像素訪問。
我們看第一個函數(shù)的簽名,有個*,這里就要寫一下C語言的知識了。
先說這個函數(shù)的作用-agast58_detect() 是AGAST算法中用于檢測角點(diǎn)的主要函數(shù)。
它的主要功能是:
在輸入圖像img上,使用一個5x5像素模板滑動掃描。
將中心像素與周圍像素進(jìn)行比較,大于或小于閾值b的編碼成一個特征碼。
如果特征碼與角點(diǎn)的模板匹配,則記錄該像素為角點(diǎn)候選。
所有檢測到的角點(diǎn)候選保存在 corner_t 結(jié)構(gòu)體數(shù)組 corners 中。
num_corners 為輸出參數(shù),用于返回檢測到的角點(diǎn)總數(shù)。
roi 參數(shù)用于指定只檢測圖像的某個區(qū)域。
其中corner_t結(jié)構(gòu)體包含了每個檢測到角點(diǎn)的x,y坐標(biāo)和score明顯性分?jǐn)?shù)。
agast檢測依賴于一個經(jīng)過優(yōu)化的像素訪問順序以及二值比較來實(shí)現(xiàn)高效運(yùn)算。
在C語言中,函數(shù)名前面的*代表該函數(shù)返回一個指針類型。
對于agast58_detect這個函數(shù):
返回值的類型是corner_t*,是一個指向corner_t結(jié)構(gòu)體的指針。
這個指針指向一個動態(tài)分配的數(shù)組,用于存儲檢測到的所有角點(diǎn)。
加上*的原因:
返回一個指針,函數(shù)可以返回一個數(shù)組或?qū)ο?不僅僅是一個scalar值。
指針訪問內(nèi)存速度快,不需要拷貝整個數(shù)組。
函數(shù)執(zhí)行結(jié)束后,指針變量還可以被外部代碼訪問,相當(dāng)于函數(shù)可以修改外部變量。
把返回數(shù)組的內(nèi)存管理交給調(diào)用者,函數(shù)執(zhí)行完就可以釋放內(nèi)部內(nèi)存,不用維護(hù)資源。
總結(jié)一下:
*表示返回一個指針
可以返回動態(tài)數(shù)組/對象
提高效率,不拷貝大數(shù)組
指針可修改外部變量
內(nèi)存管理交給調(diào)用者
程序的實(shí)現(xiàn)里面大量的使用了指針的偏移,基本思想是:
直接通過指針運(yùn)算獲取相鄰像素,而不用每次計算坐標(biāo)。
預(yù)先計算好偏移量,例如左上角像素的偏移量是 -1行 -1列。
將這些固定偏移量存儲在變量中,比如s_offset0。
在訪問像素時,直接基于指針偏移這個固定的值,這樣就跳過了坐標(biāo)計算。
例如,當(dāng)前指針指向像素 (x, y):
uint8_t *imgPtr = &img[y * width + x];
獲取左上角像素,不用偏移:
uint8_t leftUp = img[ (y-1) * width + (x-1) ]; // 需要計算坐標(biāo)
使用偏移:
int offset0 = -width - 1; // 預(yù)先計算偏移量 uint8_t leftUp = imgPtr[offset0]; // 基于指針偏移
通過指針偏移,避免每次獲取相鄰像素時重復(fù)計算偏移量,這樣可以明顯減少計算量,從而加速像素訪問。
再看這個函數(shù),這個alloc_keypoint()函數(shù)是用于分配和初始化一個關(guān)鍵點(diǎn)結(jié)構(gòu)kp_t的。
它做了以下幾件事:
使用xalloc0()在堆上分配一個kp_t結(jié)構(gòu)的內(nèi)存,并初始化為0。
將傳入的x,y坐標(biāo)及score分?jǐn)?shù)存入kp_t中。
注釋里提到必須將描述子descriptor數(shù)組初始化為0。這里通過xalloc0()預(yù)先設(shè)置為0實(shí)現(xiàn)。
返回這個kp_t指針。
這樣調(diào)用者就可以拿到一個堆上分配的、坐標(biāo)與分?jǐn)?shù)填充了、描述子初始化為0的關(guān)鍵點(diǎn)結(jié)構(gòu)kp_t。
需要注意的是:
必須初始化描述子數(shù)組,后續(xù)的特征描述算子會填充描述子。
使用xalloc0()而不是malloc,可以自動初始化內(nèi)存為0。
返回 kp_t 指針,調(diào)用者可以進(jìn)一步訪問關(guān)鍵點(diǎn)數(shù)據(jù)。
綜上,這是一個輔助函數(shù),用于根據(jù)坐標(biāo)分?jǐn)?shù)快速創(chuàng)建一個關(guān)鍵點(diǎn)結(jié)構(gòu).
它自己又重寫了一次這個malloc的函數(shù),xalloc0()是一種自定義的內(nèi)存分配函數(shù),與malloc()類似,但是有一些額外的功能:
當(dāng)size為0時,直接返回NULL,而不報錯。這與malloc的行為不同。
使用gc_alloc在堆上分配內(nèi)存,這是MaixPy特有的 gc 堆內(nèi)存分配函數(shù)。
分配成功后用memset清零內(nèi)存。這是xalloc0的關(guān)鍵功能之一。
如果分配失敗,調(diào)用xalloc_fail導(dǎo)致程序異常。
返回清零后的內(nèi)存指針。
這樣使用xalloc0比malloc好在:
SIZE為0時不會錯誤。
自動清零內(nèi)存,不需再memset。
與MaixPy的GC堆內(nèi)存管理兼容。
出錯時終止程序,不需要額外判斷返回NULL情況。
這個init5_8_pattern()函數(shù)是用于初始化圖像像素的8方向偏移量,這是AGAST算法的一個優(yōu)化。
它的作用是:
接收圖像的寬度width作為參數(shù)。
如果當(dāng)前寬度與已保存的s_width相同,直接返回,不再初始化,避免重復(fù)計算。
如果寬度變了,更新s_width為新寬度。
計算8個方向相對當(dāng)前像素點(diǎn)的偏移量:
s_offset0 (-1, -1) 左上角
s_offset1 (-1, 0) 正上方
...
s_offset7 (-1, 1) 左下角
偏移量根據(jù)圖像寬度width調(diào)整,即乘以width。
這樣,在后續(xù)檢測角點(diǎn)時,可以直接用這些預(yù)計算偏移訪問周圍像素,不需要每次都計算坐標(biāo)偏移,加速了像素訪問。通過一次初始化,減少重復(fù)計算,從而提升檢測效率。充分利用了圖像具有固定尺寸的特點(diǎn)。
這個agast_detect()函數(shù)實(shí)現(xiàn)了AGAST角點(diǎn)檢測的完整流程:
初始化5x5窗口的偏移量init5_8_pattern()
調(diào)用agast58_detect()函數(shù)進(jìn)行角點(diǎn)檢測,返回檢測到的角點(diǎn)數(shù)組
對每一個角點(diǎn)調(diào)用agast58_score()計算明顯性分?jǐn)?shù)
進(jìn)行非極大值抑制nonmax_suppression(),過濾掉弱角點(diǎn)
將剩下的角點(diǎn)保存在輸出的keypoints數(shù)組中
釋放臨時的角點(diǎn)內(nèi)存fb_free()
所以這個函數(shù)將角點(diǎn)檢測、評分和濾波三個階段包裝起來,實(shí)現(xiàn)了一個完整的AGAST角點(diǎn)檢測器。
它接受輸入圖像,檢測參數(shù)(threshold),區(qū)域等,最終輸出經(jīng)過優(yōu)化的高質(zhì)量角點(diǎn)集。
其實(shí)還沒有完全說完,這個函數(shù)很長:
大概是這樣的
初始化循環(huán)邊界 - xsizeB, ysizeB 定義了只在圖像有效區(qū)域內(nèi)循環(huán)
分配內(nèi)存 - 使用 fb_alloc 在內(nèi)存池中分配 corner_t 數(shù)組
雙重循環(huán) - 外層循環(huán) y 方向,內(nèi)層循環(huán) x 方向掃描每個像素
像素比較 - 在 homogeneous 和 structured 兩個標(biāo)簽下,使用偏移像素比較中心像素,判斷是否匹配角點(diǎn)模式
記錄角點(diǎn) - 如果匹配就記錄下角點(diǎn)坐標(biāo)到 corners 數(shù)組
返回結(jié)果 - 將檢測到的角點(diǎn)數(shù)量賦值給 num_corners,并返回角點(diǎn)數(shù)組
里面的循環(huán)做的這個事情比較多。
同樣下頭的還有一個函數(shù), agast58_score() 函數(shù)主要實(shí)現(xiàn)了A-GAST算法中使用二分法搜索最佳閾值的步驟。
主要流程是:
初始化閾值的上下限 bmin、bmax。
不斷循環(huán),將當(dāng)前閾值 b 代入角點(diǎn)模式比較。
如果匹配了角點(diǎn)模式,則把 b 作為新的下限 bmin。
如果不匹配角點(diǎn)模式,則把 b 作為新的上限 bmax。
通過二分不斷逼近使得角點(diǎn)模式匹配的像素數(shù)最多的閾值。
當(dāng)上下限只差1時,返回最佳閾值 bmin。
關(guān)鍵點(diǎn):
使用二分搜索提升角點(diǎn)明顯性。
像素比較使用偏移訪問提速。
通過不斷調(diào)整閾值 b 尋找最佳角點(diǎn)模式匹配。
返回最佳閾值,作為該像素角點(diǎn)的分?jǐn)?shù)。
看下這個檢測算法里面的這個句子,
循環(huán)遍歷所有檢測到的角點(diǎn) corners
計算每個角點(diǎn)的像素指針 - 通過角點(diǎn)的 x,y 坐標(biāo),計算在圖像像素數(shù)組中的偏移量
調(diào)用 agast58_score() 并傳入像素指針和閾值threshold
agast58_score() 將返回0-255范圍的分?jǐn)?shù),記錄在 corner[i].score 中
最后每個角點(diǎn)除了有坐標(biāo)x,y之外,還有一個分?jǐn)?shù)score表示角點(diǎn)的明顯程度。
所以這個過程對每一個角點(diǎn)候選運(yùn)行了二分搜索,找到了最佳的閾值,作為該點(diǎn)的分?jǐn)?shù)。分?jǐn)?shù)高的角點(diǎn)匹配度更好,更明顯,更穩(wěn)定,這樣后續(xù)就可以基于分?jǐn)?shù)進(jìn)行非極大值抑制來過濾掉弱角點(diǎn)。這種為每個角點(diǎn)單獨(dú)密集計算的方式也是AGAST算法區(qū)別于FAST算法的主要特點(diǎn)之一。
這個非極大值抑制(non-maximum suppression)函數(shù)的作用是去除重復(fù)或邊緣響應(yīng)較弱的非極大值角點(diǎn),只保留每個局部區(qū)域響應(yīng)最強(qiáng)的角點(diǎn)。
主要步驟是:
計算每一行的起始角點(diǎn)索引,用于快速查找上下行角點(diǎn)。
對每個角點(diǎn),檢查其上下左右4鄰域是否存在更高分?jǐn)?shù)的角點(diǎn)。
如果存在,則抑制該角點(diǎn),不將其錄入最終角點(diǎn)集。
只保留每個局部區(qū)域分?jǐn)?shù)最高的角點(diǎn)。
檢查內(nèi)存是否足夠,不足則試圖釋放內(nèi)存使能繼續(xù)錄入角點(diǎn)。
將抑制后的角點(diǎn)保存到輸出數(shù)組中。
這通過只保留局部最大值點(diǎn),去除了邊緣響應(yīng)較弱的重復(fù)角點(diǎn),提升了角點(diǎn)質(zhì)量。
AGAST算法相比FAST算法加入了這個非極大值抑制步驟,可以有效提升角點(diǎn)的重復(fù)性和分布均勻性。
里面有一個這樣的句子,是初始化 row_start 數(shù)組,row_start 數(shù)組用來記錄每一行的第一個角點(diǎn)在 corners 數(shù)組中的索引。
具體地:
row_start 的大小是圖像總行數(shù)+1,即 last_row + 1
使用 -1 來表示該行沒有檢測到角點(diǎn)
初始化所有值為 -1,表示剛開始還沒有任何角點(diǎn)
后面在檢測到角點(diǎn)時會記錄:
row_start[角點(diǎn)所在行] = 角點(diǎn)在corners數(shù)組中的索引
所以row_start[y] = x 表示:
第y行的第一個角點(diǎn)在corners數(shù)組中的索引為x
這樣初始化row_start為-1VeryAmerican,在后續(xù)的非極大值抑制中,就可以通過row_start數(shù)組快速獲取上下行的角點(diǎn)信息,從而高效實(shí)現(xiàn)非極大值抑制。
審核編輯:劉清
-
機(jī)器視覺
+關(guān)注
關(guān)注
163文章
4595瀏覽量
122845 -
C語言
+關(guān)注
關(guān)注
180文章
7632瀏覽量
141549 -
BMP
+關(guān)注
關(guān)注
0文章
48瀏覽量
17392 -
計算機(jī)視覺
+關(guān)注
關(guān)注
9文章
1708瀏覽量
46760 -
openMV
+關(guān)注
關(guān)注
3文章
40瀏覽量
10314
原文標(biāo)題:OpenMV-AGAST算法代碼閱讀
文章出處:【微信號:TT1827652464,微信公眾號:云深之無跡】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
openMV與stm32是如何進(jìn)行通訊的
OpenMv和STM32通信問題
OpenMV簡單實(shí)現(xiàn)物體追蹤
如何對基于stm32的json進(jìn)行解析
基于openMV的追球小車設(shè)計資料分享
一文解析OpenMv串口
如何用cubemx寫openmv與stm32通訊的代碼
C++的G代碼解析算法研究
OpenMV追蹤物體應(yīng)用教程(無需自寫代碼)

stm32與openmv通訊實(shí)現(xiàn)識別顏色并讀取坐標(biāo)值[hal庫]
![stm32與<b class='flag-5'>openmv</b>通訊實(shí)現(xiàn)識別顏色并讀取坐標(biāo)值[hal庫]](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
openmv4系列1----基本認(rèn)知

【DIY】基于OpenMV的STM32追球小車

OpenMV初識

如何在OpenMV生態(tài)系統(tǒng)中集成STM32Cube.AI生成的代碼

評論