一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀
卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點

卷積神經(jīng)網(wǎng)絡(luò)的基本原理

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最重要的神經(jīng)網(wǎng)絡(luò)之一。它是一種由多個卷積層和池化層(也可稱為下采樣層)組成的神經(jīng)網(wǎng)絡(luò)。CNN 的基本思想是以圖像為輸入,通過網(wǎng)絡(luò)的卷積、下采樣和全連接等多個層次的處理,將圖像的高層抽象特征提取出來,從而完成對圖像的識別、分類等任務(wù)。

CNN 的基本結(jié)構(gòu)包括輸入層、卷積層、池化層、全連接層和輸出層。其中卷積層和池化層是最核心的部分。

卷積層的作用是從輸入圖像中提取特征。它通過卷積操作對圖像進行卷積運算,生成多個卷積特征圖。卷積層的核心是卷積核,它是一個與輸入的圖像進行卷積計算的矩陣。卷積核從圖像的左上角開始進行掃描,每次移動一格,在移動過程中,對卷積核和圖像對應(yīng)位置的元素進行相乘,再將相乘結(jié)果求和,得到一個新的數(shù)值。這個數(shù)值就是卷積特征圖的一個像素值。卷積層通常會加入偏置項和激活函數(shù)對卷積特征圖做進一步的處理。

池化層的作用是縮小特征圖的尺寸,減少網(wǎng)絡(luò)參數(shù),提高運算速度,并且增強模型的魯棒性和泛化性能。池化層主要有 MaxPooling 和 AveragePooling 兩種方式。MaxPooling 取池化區(qū)域內(nèi)像素的最大值作為新的像素值,而 AveragePooling 取池化區(qū)域內(nèi)像素的平均值作為新的像素值。

全連接層對前面的卷積層和池化層提取的特征進行線性組合,最終得出分類結(jié)果。

卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程

卷積神經(jīng)網(wǎng)絡(luò)最早可追溯到 1980 年代,當時 Yann Lecun 等人設(shè)計了一種名為 LeNet-5 的卷積神經(jīng)網(wǎng)絡(luò),成功地應(yīng)用于手寫數(shù)字的識別。LeNet-5 包含兩個卷積層和三個全連接層,是當時最先進的手寫數(shù)字識別模型。

但是在將 CNN 應(yīng)用于更廣泛的場景中時,遇到了一些困難。一是卷積核的設(shè)計,需要大量的人工經(jīng)驗和實驗,耗費大量時間;二是計算量非常大,參數(shù)量和計算復(fù)雜度都很高。直到 2012 年,Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 設(shè)計了名為 AlexNet 的卷積神經(jīng)網(wǎng)絡(luò),在 ImageNet 比賽中大勝利,使得卷積神經(jīng)網(wǎng)絡(luò)得到廣泛的關(guān)注和應(yīng)用。

自此,卷積神經(jīng)網(wǎng)絡(luò)在各個領(lǐng)域中的應(yīng)用進一步擴展。如 GoogleNet、VGG、ResNet 等網(wǎng)絡(luò)模型相繼出現(xiàn),其中 ResNet 模型更是在 2015 年 ImageNet 比賽中獲得冠軍。除了圖像識別,卷積神經(jīng)網(wǎng)絡(luò)還能應(yīng)用于自然語言處理、視頻分析、音頻處理等領(lǐng)域,正在成為人工智能領(lǐng)域中不可缺少的一部分。

卷積神經(jīng)網(wǎng)絡(luò)三大特點

卷積神經(jīng)網(wǎng)絡(luò)具有以下三大特點:

1. 局部連接:在卷積層中,每個卷積核只對輸入圖像的一小部分進行卷積計算,即只與局部區(qū)域相連,這樣可以大大降低網(wǎng)絡(luò)的復(fù)雜度,減少模型參數(shù),并且可以捕捉圖像的空間局部性質(zhì)。

2. 參數(shù)共享:在卷積層中,同一個卷積核對應(yīng)的所有卷積位置都使用相同的卷積參數(shù),這樣可以充分利用圖像的統(tǒng)計局部特性,簡化模型結(jié)構(gòu),加速計算速度,并且可以增強模型的泛化能力。

3. 下采樣:卷積神經(jīng)網(wǎng)絡(luò)中的池化層可以對特征圖進行降采樣,在保留重要特征信息的同時,減少模型參數(shù),降低過擬合的風(fēng)險。下采樣的具體方式有 MaxPooling 和 AveragePooling 兩種方法,其中 MaxPooling 主要用于提取圖像的邊緣特征,而 AveragePooling 更適用于提取圖像的全局特征。

總結(jié)

卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)領(lǐng)域中最為重要的神經(jīng)網(wǎng)絡(luò)之一,它的發(fā)展歷程可以追溯到 1980 年代。卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)包括輸入層、卷積層、池化層、全連接層和輸出層,其中卷積層和池化層是最核心的部分。卷積神經(jīng)網(wǎng)絡(luò)具有局部連接、參數(shù)共享和下采樣等三大特點,能夠提取圖像的高層抽象特征,完成圖像的識別、分類等任務(wù),應(yīng)用于各種領(lǐng)域。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?391次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點是每一層的每個神經(jīng)元都與下一層的所有
    的頭像 發(fā)表于 11-15 14:53 ?1387次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義
    的頭像 發(fā)表于 11-15 14:47 ?1492次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    的基本概念、原理、特點以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)算法,它由多層
    的頭像 發(fā)表于 07-11 14:38 ?2014次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。它們各自具有獨特的特點和優(yōu)勢,并在不同的應(yīng)用場景中發(fā)揮著重要作用。以下是對BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)關(guān)系的詳細探討,
    的頭像 發(fā)表于 07-10 15:24 ?2084次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    結(jié)構(gòu)。它們在處理不同類型的數(shù)據(jù)和解決不同問題時具有各自的優(yōu)勢和特點。本文將從多個方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1806次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)原理

    、訓(xùn)練過程以及應(yīng)用場景。 卷積神經(jīng)網(wǎng)絡(luò)基本原理 1.1 卷積操作 卷積神經(jīng)網(wǎng)絡(luò)的核心是
    的頭像 發(fā)表于 07-03 10:49 ?916次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:12 ?2193次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    ,包括基本原理、常見架構(gòu)、優(yōu)化策略、應(yīng)用場景等。 1. 卷積神經(jīng)網(wǎng)絡(luò)基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一
    的頭像 發(fā)表于 07-03 09:40 ?767次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?761次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    核心思想是通過卷積操作提取輸入數(shù)據(jù)的特征。與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)不同,卷積神經(jīng)網(wǎng)絡(luò)具有參數(shù)共享和局部連接的特點,這使得其在處理圖像等高維數(shù)據(jù)時具有
    的頭像 發(fā)表于 07-02 16:47 ?1031次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)基本原理和應(yīng)用范圍

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-02 15:30 ?1766次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?1069次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?5651次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)基本原理、結(jié)構(gòu)及訓(xùn)練過程

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)算法,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-02 14:21 ?3856次閱讀