一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù)

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識別、語音識別等領(lǐng)域的深度學(xué)習算法。CNN模型最早被提出是為了處理圖像,其模型結(jié)構(gòu)中包含卷積層、池化層和全連接層等關(guān)鍵技術(shù),經(jīng)過多個卷積層和池化層的處理,CNN可以提取出圖像中的特征信息,從而對圖像進行分類。

一、卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)算法最早起源于圖像處理領(lǐng)域。它是一種深度學(xué)習算法,屬于人工神經(jīng)網(wǎng)絡(luò)的一種。CNN模型的核心思想是特征提取、擬合函數(shù)的學(xué)習和歸一化三個方面,它是一種通過從數(shù)據(jù)中自動學(xué)習特征表示來進行分類或回歸分析的方法。

CNN模型可以自動地從數(shù)據(jù)中提取特征,其算法主要包括以下幾個步驟:

(1)卷積層:卷積層是CNN網(wǎng)絡(luò)的核心組件之一,其中卷積核通過滑動窗口的方式和輸入數(shù)據(jù)進行卷積操作,從而提取出圖像中的特征信息。卷積核的大小、步長、填充等參數(shù)可以在訓(xùn)練網(wǎng)絡(luò)時進行調(diào)節(jié)。

(2)池化層:池化層用于壓縮特征圖像,減少網(wǎng)絡(luò)參數(shù)和計算復(fù)雜度。在CNN網(wǎng)絡(luò)中,通常采用最大池化或平均池化的方式來提取特征圖像。

(3)全連接層:全連接層將經(jīng)過卷積層和池化層處理后的圖像特征進行展平處理,并將其輸入到一個全連接神經(jīng)網(wǎng)絡(luò)中進行分類。

CNN模型的學(xué)習過程可以通過反向傳播算法來實現(xiàn),并通過梯度下降算法來調(diào)整網(wǎng)絡(luò)參數(shù),使其逐漸逼近最優(yōu)解。CNN算法的訓(xùn)練過程必須在具有大量數(shù)據(jù)的環(huán)境中進行,以便模型能夠更加準確地進行預(yù)測和分類。

二、卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù)

1、卷積層

卷積層是CNN網(wǎng)絡(luò)的核心組件之一。通常來說,卷積層可以通過一個或多個濾波器對輸入數(shù)據(jù)進行卷積,從而提取圖像中的特征信息。卷積核可以通過訓(xùn)練過程中的反向傳播算法來調(diào)整,以獲得更為準確的特征提取效果。

在卷積層中,濾波器的操作可以通過以下式子來表示:

$y_{ij}=\sum_{k=0}^{K-1} \sum_{l=0}^{L-1} w_{kl} x_{i+k,j+l}+b$

其中,$K$和$L$分別表示濾波器的高度和寬度,$w_{kl}$為濾波器中的權(quán)重參數(shù),$x_{i+k,j+l}$和$b$表示輸入圖像中的像素值和偏置量。

2、池化層

池化層通常用于對輸入數(shù)據(jù)進行下采樣,從而減少網(wǎng)絡(luò)的參數(shù)量和計算復(fù)雜度。常見的池化方式包括最大池化和平均池化兩種。在最大池化的操作中,每個池化窗口輸出其內(nèi)元素的最大值;在平均池化中,每個池化窗口輸出其內(nèi)元素的平均值。

3、激活函數(shù)

激活函數(shù)是在卷積層的輸出結(jié)果上進行非線性變換的函數(shù),通常用于增強CNN模型的非線性特征。常見的激活函數(shù)包括Sigmoid、ReLu、TanH等,其中,ReLu是卷積神經(jīng)網(wǎng)絡(luò)中最常用的激活函數(shù),它可以通過以下式子來計算:

$f(x)=max(0,x)$

4、Dropout技術(shù)

Dropout技術(shù)是一種用于防止卷積神經(jīng)網(wǎng)絡(luò)過擬合的技巧。在Dropout技術(shù)中,每個訓(xùn)練周期都會隨機地關(guān)閉一部分神經(jīng)元和連接,從而防止網(wǎng)絡(luò)過擬合。在測試過程中,所有神經(jīng)元均處于打開狀態(tài),以獲得最優(yōu)的分類閾值。

5、卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)被廣泛應(yīng)用于圖像分類、目標檢測和語音識別等領(lǐng)域。其中,圖像分類領(lǐng)域的應(yīng)用較為廣泛,這得益于CNN在圖像處理上的優(yōu)越性能。卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)被廣泛應(yīng)用于圖像分類、目標檢測和語音識別等領(lǐng)域。其中,圖像分類領(lǐng)域的應(yīng)用較為廣泛,這得益于CNN在圖像處理上的優(yōu)越性能。2021年6月,中國國家人工智能開放創(chuàng)新平臺發(fā)布了全球首個基于深度學(xué)習的外星生命搜索引擎——AlienHunterPro,采用基于Tensorflow的卷積神經(jīng)網(wǎng)絡(luò)算法,主要用于對地外生命探測任務(wù)進行來自行星表面的圖像分類,是卷積神經(jīng)網(wǎng)絡(luò)算法在科學(xué)研究和探索領(lǐng)域初步應(yīng)用的一個案例。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1212次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    深度學(xué)習中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習近年來在多個領(lǐng)域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?847次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機制

    的結(jié)構(gòu)與工作機制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網(wǎng)絡(luò)的核心,負責在整個序列
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14