一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA AI Foundation Models:使用生產(chǎn)就緒型 LLM 構(gòu)建自定義企業(yè)聊天機(jī)器人和智能副駕

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來(lái)源:未知 ? 2023-11-17 21:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

wKgZomVXbTKAGJfHAAW1azkbVqE901.png

大語(yǔ)言模型(LLM)正在徹底變革數(shù)據(jù)科學(xué),帶來(lái)自然語(yǔ)言理解、AI機(jī)器學(xué)習(xí)的高級(jí)功能。為洞悉特定領(lǐng)域而定制的自定義 LLM 在企業(yè)應(yīng)用中越來(lái)越受到青睞。

NVIDIA Nemotron-3 8B系列基礎(chǔ)模型是一套功能強(qiáng)大的全新工具,可用于為企業(yè)構(gòu)建生產(chǎn)就緒生成式 AI 應(yīng)用,從而推動(dòng)從客服 AI 聊天機(jī)器人到尖端 AI 產(chǎn)品的各種創(chuàng)新。

這些新的基礎(chǔ)模型現(xiàn)已加入NVIDIA NeMo。這個(gè)端到端框架用于構(gòu)建、自定義和部署專(zhuān)為企業(yè)定制的 LLM。企業(yè)現(xiàn)在可以使用這些工具快速且經(jīng)濟(jì)高效地大規(guī)模開(kāi)發(fā) AI 應(yīng)用。這些應(yīng)用可在云端、數(shù)據(jù)中心以及 Windows PC 和筆記本電腦上運(yùn)行。

Nemotron-3 8B 系列現(xiàn)已在 Azure AI Model 目錄、HuggingFace 和NVIDIA NGC 目錄上的NVIDIA AI Foundation Model中心提供。該系列包含基本模型、聊天模型和問(wèn)答(Q&A)模型,可解決各種下游任務(wù)。表 1 列出了該系列的所有模型。

wKgZomVXbTKAaCMEAAD20aBXqnc614.jpg

表 1. Nemotron-3 8B 系列基礎(chǔ)模型支持多種 LLM 用例

設(shè)計(jì)用于生產(chǎn)的基礎(chǔ)模型

基礎(chǔ)模型是強(qiáng)大的構(gòu)建模塊,它減少了構(gòu)建實(shí)用的自定義應(yīng)用所需的時(shí)間和資源。然而,企業(yè)機(jī)構(gòu)必須確保這些模型符合其具體需求。

NVIDIA AI Foundation Models 基于來(lái)源可靠的數(shù)據(jù)集訓(xùn)練而成,集合了無(wú)數(shù)聲音和體驗(yàn)。嚴(yán)格監(jiān)控確保了數(shù)據(jù)的真實(shí)性,并符合不斷變化發(fā)展的法律規(guī)定。任何出現(xiàn)的數(shù)據(jù)問(wèn)題都會(huì)迅速得到解決,確保企業(yè)的 AI 應(yīng)用既符合法律規(guī)范,又能保護(hù)用戶隱私。這些模型既能吸收公開(kāi)數(shù)據(jù)集,也能兼容專(zhuān)有數(shù)據(jù)集。

Nemotron-3-8B 基本模型

Nemotron-3-8B 基本模型是一種用于生成類(lèi)人文本或代碼的緊湊型高性能模型。該模型的 MMLU 5 樣本平均值為 54.4。該基本模型還精通 53 種語(yǔ)言,包括英語(yǔ)、德語(yǔ)、俄語(yǔ)、西班牙語(yǔ)、法語(yǔ)、日語(yǔ)、中文、意大利語(yǔ)和荷蘭語(yǔ),因此能滿足跨國(guó)企業(yè)對(duì)多語(yǔ)言能力的需求。該基本模型還經(jīng)過(guò) 37 種不同編碼語(yǔ)言的訓(xùn)練。

Nemotron-3-8B 聊天模型

該套件還添加了 Nemotron-3-8B 聊天模型,用于 LLM 驅(qū)動(dòng)的聊天機(jī)器人交互。Nemotron-3-8B 聊天模型有三個(gè)版本,每個(gè)版本均針對(duì)特定用戶的獨(dú)特調(diào)整而設(shè)計(jì):

  • 監(jiān)督微調(diào)(SFT)

  • 人類(lèi)反饋強(qiáng)化學(xué)習(xí)(RLHF)

  • NVIDIA SteerLM(https://blogs.nvidia.com/blog/2023/10/11/customize-ai-models-steerlm/

Nemotron-3-8B-SFT 模型是指令微調(diào)的第一步,我們?cè)诖嘶A(chǔ)上建立了 RLHF 模型,該模型是 8B 類(lèi)別中 MT-Bench 分?jǐn)?shù)最高的模型(MT-Bench 是最常用的聊天質(zhì)量指標(biāo))。用戶可以從使用 8B-chat-RLHF 開(kāi)始,以獲得最佳的即時(shí)聊天互動(dòng)效果。但對(duì)于希望與最終用戶的偏好保持一致的企業(yè),可以在使用 SFT 模型的同時(shí),應(yīng)用自己的 RLHF。

最后,最新的對(duì)齊方法 SteerLM 為訓(xùn)練和自定義推理 LLM 提供了新的靈活性。借助 SteerLM,用戶可以定義其所需的所有屬性,并將其嵌入單個(gè)模型中,然后就可以在該模型運(yùn)行時(shí)為特定用例選擇其所需的組合。

這種方法支持持續(xù)的改進(jìn)周期。自定義模型響應(yīng)可以作為未來(lái)訓(xùn)練的數(shù)據(jù),從而將模型的實(shí)用性提升到新的水平。

Nemotron-3-8B 問(wèn)答模型

Nemotron-3-8B-QA 模型是一個(gè)問(wèn)答(QA)模型,該模型在大量數(shù)據(jù)基礎(chǔ)上針對(duì)目標(biāo)用例進(jìn)行微調(diào)。

Nemotron-3-8B-QA 模型的性能一流,在 Natural Questions 數(shù)據(jù)集(https://ai.google.com/research/NaturalQuestions/)上實(shí)現(xiàn)了 41.99% 的零樣本 F1 分?jǐn)?shù)。該指標(biāo)用于衡量生成的答案與問(wèn)答中真實(shí)答案的相似程度。

Nemotron-3-8B-QA 模型已與其他參數(shù)規(guī)模更大的先進(jìn)語(yǔ)言模型進(jìn)行了對(duì)比測(cè)試。測(cè)試是在 NVIDIA 創(chuàng)建的數(shù)據(jù)集以及 Natural Questions 和 Doc2Dial 數(shù)據(jù)集上進(jìn)行的。結(jié)果表明,該模型具有良好的性能。

使用 NVIDIA NeMo 框架

構(gòu)建自定義 LLM

NVIDIA NeMo 通過(guò)為多種模型架構(gòu)提供端到端功能和容器化方案,簡(jiǎn)化了構(gòu)建自定義企業(yè)生成式 AI 模型的路徑。借助 Nemotron-3-8B 系列模型,開(kāi)發(fā)者就可以使用 NVIDIA 提供的預(yù)訓(xùn)練模型,這些模型可以輕松適應(yīng)特定用例。

快速模型部署

使用 NeMo 框架時(shí),無(wú)需收集數(shù)據(jù)或設(shè)置基礎(chǔ)架構(gòu)。NeMo 精簡(jiǎn)了這一過(guò)程。開(kāi)發(fā)者可以自定義現(xiàn)有模型,并將其快速部署到生產(chǎn)中。

最佳模型性能

此外,它還與NVIDIA TensorRT-LLM開(kāi)源庫(kù)和NVIDIA Triton 推理服務(wù)器無(wú)縫集成,前者可優(yōu)化模型性能,后者可加速推理服務(wù)流程。這種工具組合實(shí)現(xiàn)了最先進(jìn)的準(zhǔn)確性、低延遲和高吞吐量。

數(shù)據(jù)隱私和安全

NeMo 可實(shí)現(xiàn)安全、高效的大規(guī)模部署,并符合相關(guān)安全法規(guī)規(guī)定。例如,如果數(shù)據(jù)隱私是業(yè)務(wù)的關(guān)鍵問(wèn)題,就可以使用NeMo Guardrails在不影響性能或可靠性的情況下安全存儲(chǔ)客戶數(shù)據(jù)。

總之,使用 NeMo 框架構(gòu)建自定義 LLM 是在不犧牲質(zhì)量或安全標(biāo)準(zhǔn)的情況下、快速創(chuàng)建企業(yè) AI 應(yīng)用的有效方法。它為開(kāi)發(fā)者提供了自定義靈活性,同時(shí)提供了大規(guī)??焖俨渴鹚璧膹?qiáng)大工具。

開(kāi)始使用 Nemotron-3-8B

您可以使用 NeMo 框架在 Nemotron-3-8B 模型上輕松運(yùn)行推理,該框架充分利用 TensorRT-LLM 開(kāi)源庫(kù),可在NVIDIA GPU上為高效和輕松的 LLM 推理提供高級(jí)優(yōu)化。它內(nèi)置了對(duì)各種優(yōu)化技術(shù)的支持,包括:

  • KV caching

  • Efficient Attention modules (including MQA, GQA, and Paged Attention)

  • In-flight (or continuous) batching

  • 支持低精度(INT8/FP8)量化以及其他優(yōu)化

NeMo 框架推理容器包含在 NeMo 模型(如 Nemotron-3-8B 系列)上應(yīng)用 TensorRT-LLM 優(yōu)化所需的所有腳本和依賴項(xiàng),并將它們托管在 Triton 推理服務(wù)器上。部署完成后,它可以開(kāi)放一個(gè)端點(diǎn),供您發(fā)送推理查詢。

在 Azure ML 上的部署步驟

Nemotron-3-8B 系列模型可在 Azure ML 模型目錄中獲得,以便部署到 Azure ML 管理的端點(diǎn)中。AzureML 提供了易于使用的“無(wú)代碼部署”流程,使部署 Nemotron-3-8B 系列模型變得非常容易。該平臺(tái)已集成了作為 NeMo 框架推理容器的底層管道。

wKgZomVXbTKAFSStAACR2QTk7WA932.png

圖 1. 在 Azure ML 中選擇實(shí)時(shí)端點(diǎn)

如要在 Azure ML 上部署 NVIDIA 基礎(chǔ)模型并進(jìn)行推理,請(qǐng)按照以下步驟操作:

  1. 登錄 Azure 賬戶:https://portal.azure.com/#home

  2. 導(dǎo)航至 Azure ML 機(jī)器學(xué)習(xí)工作室

  3. 選擇您的工作區(qū),并導(dǎo)航至模型目錄

NVIDIA AI Foundation 模型可在 Azure 上進(jìn)行微調(diào)、評(píng)估和部署,還可以在 Azure ML 中使用 NeMo 訓(xùn)練框架對(duì)這些模型進(jìn)行自定義。NeMo 框架由訓(xùn)練和推理容器組成,已集成在 AzureML 中。

如要微調(diào)基本模型,請(qǐng)選擇您喜歡的模型變體,單擊“微調(diào)”,填寫(xiě)任務(wù)類(lèi)型、自定義訓(xùn)練數(shù)據(jù)、訓(xùn)練和驗(yàn)證分割以及計(jì)算集群等參數(shù)。

如要部署該模型,請(qǐng)選擇您喜歡的模型變體,單擊“實(shí)時(shí)端點(diǎn)”,選擇實(shí)例、端點(diǎn)和其他用于自定義部署的參數(shù)。單擊“部署”,將推理模型部署到端點(diǎn)。

Azure CLI 和 SDK 支持也可用于在 Azure ML 上運(yùn)行微調(diào)作業(yè)和部署。詳細(xì)信息請(qǐng)參見(jiàn)“Azure ML 中的 Foundation Models”文檔。

在本地或其他云上的部署步驟

Nemotron-3-8B 系列模型具有獨(dú)特的推理請(qǐng)求提示模板,建議將其作為最佳實(shí)踐。但由于它們共享相同的基本架構(gòu),因此其部署說(shuō)明很相似。

有關(guān)使用 NeMo 框架推理容器的最新部署說(shuō)明,參見(jiàn):https://registry.ngc.nvidia.com/orgs/ea-bignlp/teams/ga-participants/containers/nemofw-inference。

為了演示,讓我們部署 Nemotron-3-8B-Base-4k。

1. 登錄 NGC 目錄,獲取推理容器。

# log in to your NGC organization
docker login nvcr.io


# Fetch the NeMo framework inference container
docker pull nvcr.io/ea-bignlp/ga-participants/nemofw-inference:23.10

2. 下載 Nemotron-3-8B-Base-4k 模型。8B 系列模型可在 NGC 目錄和 Hugging Face 上獲得,您可以選擇其中一個(gè)下載模型。

NVIDIA NGC

從 NGC 下載模型最簡(jiǎn)單的方法是使用 CLI。如果您沒(méi)有安裝 NGC CLI,請(qǐng)按照入門(mén)指南(https://docs.ngc.nvidia.com/cli/cmd.html#getting-started-with-the-ngc-cli)進(jìn)行安裝和配置。

# Downloading using CLI. The model path can be obtained from it’s page on NGC
ngc registry model download-version "dztrnjtldi02/nemotron-3-8b-base-4k:1.0"

Hugging Face Hub

以下指令使用的是 git-lfs,您也可以使用 Hugging Face 支持的任何方法下載模型。

git lfs install
git clone https://huggingface.co/nvidia/nemotron-3-8b-base-4knemotron-3-8b-base-4k_v1.0

3.在交互模式下運(yùn)行 NeMo 推理容器,安裝相關(guān)路徑

# Create a folder to cache the built TRT engines. This is recommended so they don’t have to be built on every deployment call. 
mkdir -p trt-cache


# Run the container, mounting the checkpoint and the cache directory
docker run --rm --net=host 
                     --gpus=all 
                     -v $(pwd)/nemotron-3-8b-base-4k_v1.0:/opt/checkpoints/  
                     -v $(pwd)/trt-cache:/trt-cache  
                     -w /opt/NeMo 
                     -it nvcr.io/ea-bignlp/ga-participants/nemofw-inference:23.10 bash

4. 在 Triton 推理服務(wù)器上使用 TensorRT-LLM 后端轉(zhuǎn)換并部署該模型。

python scripts/deploy/deploy_triton.py 
                     --nemo_checkpoint /opt/checkpoints/Nemotron-3-8B-Base-4k.nemo 
                     --model_type="gptnext" 
                     --triton_model_name Nemotron-3-8B-4K 
                     --triton_model_repository /trt-cache/ 
                     --max_input_len 3000 
                     --max_output_len 1000 
                     --max_batch_size 2

當(dāng)該指令成功完成后,就會(huì)顯示一個(gè)可以查詢的端點(diǎn)。讓我們來(lái)看看如何做到這一點(diǎn)。

運(yùn)行推理的步驟

有幾種運(yùn)行推理的方法可供選擇,取決于您希望如何集成該服務(wù):

1. 使用 NeMo 框架推理容器中的 NeMo 客戶端 API

2. 使用 PyTriton 在您的環(huán)境中創(chuàng)建一個(gè)客戶端應(yīng)用

3. 鑒于所部署的服務(wù)會(huì)開(kāi)放一個(gè) HTTP 端點(diǎn),使用任何可以發(fā)送 HTTP 請(qǐng)求的程序資源庫(kù)/工具。

選項(xiàng) 1(使用 NeMo 客戶端 API)的示例如下。您可以在同一臺(tái)設(shè)備上的 NeMo 框架推理容器中使用,也可以在能訪問(wèn)服務(wù) IP 和端口的不同設(shè)備上使用。

from nemo.deploy import NemoQuery


# In this case, we run inference on the same machine
nq = NemoQuery(url="localhost:8000", model_name="Nemotron-3-8B-4K")


output = nq.query_llm(prompts=["The meaning of life is"], max_output_token=200, top_k=1, top_p=0.0, temperature=0.1)
print(output)

其他選項(xiàng)示例可以在該推理容器的 README 中找到。

8B 系列模型指令

NVIDIA Nemotron-3-8B 系列中的模型:所有 NVIDIA Nemotron-3-8B 數(shù)據(jù)集共享預(yù)訓(xùn)練基礎(chǔ),但用于調(diào)優(yōu)聊天(SFT、RLHF、SteerLM)和問(wèn)答模型的數(shù)據(jù)集是根據(jù)其特定目的自定義的。此外,構(gòu)建上述模型還采用了不同的訓(xùn)練技術(shù),因此這些模型在使用與訓(xùn)練模板相似的定制指令時(shí)最為有效。

這些模型的推薦指令模板位于各自的模型卡上。

例如,以下是適用于 Nemotron-3-8B-Chat-SFT 和 Nemotron-3-8B-Chat-RLHF 模型的單輪和多輪格式:

wKgZomVXbTKAd9-9AAD-epn1CLM582.jpg

指令和回復(fù)字段與輸入內(nèi)容相對(duì)應(yīng)。下面是一個(gè)使用單輪模板設(shè)置輸入格式的示例。

PROMPT_TEMPLATE = """System
{system}
User
{prompt}
Assistant
"""
system = ""
prompt = "Write a poem on NVIDIA in the style of Shakespeare"


prompt = PROMPT_TEMPLATE.format(prompt=prompt, system=system)
print(prompt)

注意對(duì)于 Nemotron-3-8B-Chat-SFT 和 Nemotron-3-8B-Chat-RLHF 模型,我們建議保持系統(tǒng)提示為空。

進(jìn)一步訓(xùn)練和自定義

NVIDIA Nemotron-3-8B 模型系列適用于針對(duì)特定領(lǐng)域數(shù)據(jù)集的進(jìn)一步定制。對(duì)此有幾種選擇,例如繼續(xù)從檢查點(diǎn)進(jìn)行預(yù)訓(xùn)練、SFT 或高效參數(shù)微調(diào)、使用 RLHF 校準(zhǔn)人類(lèi)演示或使用 NVIDIA 全新 SteerLM 技術(shù)。

NeMo 框架訓(xùn)練容器提供了上述技術(shù)的易用腳本。我們還提供了各種工具,方便您進(jìn)行數(shù)據(jù)整理、識(shí)別用于訓(xùn)練和推理的最佳超參數(shù),以及在您選擇的硬件(本地 DGX 云、支持 Kubernetes 的平臺(tái)或云服務(wù)提供商)上運(yùn)行 NeMo 框架的工具。

更多信息,參見(jiàn) NeMo 框架用戶指南(https://docs.nvidia.com/nemo-framework/user-guide/latest/index.html)或容器 README(https://registry.ngc.nvidia.com/orgs/ea-bignlp/containers/nemofw-training)。

Nemotron-3-8B 系列模型專(zhuān)為各種用例而設(shè)計(jì),不僅在各種基準(zhǔn)測(cè)試中表現(xiàn)出色,還支持多種語(yǔ)言。

GTC 2024 將于 2024 年 3 月 18 至 21 日在美國(guó)加州圣何塞會(huì)議中心舉行,線上大會(huì)也將同期開(kāi)放。點(diǎn)擊“閱讀原文”掃描下方海報(bào)二維碼,立即注冊(cè) GTC 大會(huì)。


原文標(biāo)題:NVIDIA AI Foundation Models:使用生產(chǎn)就緒型 LLM 構(gòu)建自定義企業(yè)聊天機(jī)器人和智能副駕

文章出處:【微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 英偉達(dá)
    +關(guān)注

    關(guān)注

    22

    文章

    3953

    瀏覽量

    93807

原文標(biāo)題:NVIDIA AI Foundation Models:使用生產(chǎn)就緒型 LLM 構(gòu)建自定義企業(yè)聊天機(jī)器人和智能副駕

文章出處:【微信號(hào):NVIDIA-Enterprise,微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NVIDIA RTX AI PC為AnythingLLM加速本地AI工作流

    大語(yǔ)言模型(LLM)基于包含數(shù)十億個(gè) Token 的數(shù)據(jù)集訓(xùn)練而來(lái),能夠生成高質(zhì)量的內(nèi)容。它們是眾多最熱門(mén) AI 應(yīng)用的核心支撐技術(shù),包括聊天機(jī)器人、智能助手、代碼生成工具等。
    的頭像 發(fā)表于 07-04 15:05 ?344次閱讀

    HarmonyOS應(yīng)用自定義鍵盤(pán)解決方案

    自定義鍵盤(pán)是一種替換系統(tǒng)默認(rèn)鍵盤(pán)的解決方案,可實(shí)現(xiàn)鍵盤(pán)個(gè)性化交互。允許用戶結(jié)合業(yè)務(wù)需求與操作習(xí)慣,對(duì)按鍵布局進(jìn)行可視化重構(gòu)、設(shè)置多功能組合鍵位,使輸入更加便捷和舒適。在安全防護(hù)層面,自定義鍵盤(pán)可以
    的頭像 發(fā)表于 06-05 14:19 ?691次閱讀

    NVIDIA 與行業(yè)領(lǐng)先的存儲(chǔ)企業(yè)共同推出面向 AI 時(shí)代的新型企業(yè)基礎(chǔ)設(shè)施

    3 月 18 日 —— NVIDIA 今日推出了 NVIDIA AI 數(shù)據(jù)平臺(tái) —— 一項(xiàng)可自定義的參考設(shè)計(jì),領(lǐng)先的存儲(chǔ)提供商可用來(lái)構(gòu)建
    發(fā)表于 03-19 10:11 ?244次閱讀
    <b class='flag-5'>NVIDIA</b> 與行業(yè)領(lǐng)先的存儲(chǔ)<b class='flag-5'>企業(yè)</b>共同推出面向 <b class='flag-5'>AI</b> 時(shí)代的新型<b class='flag-5'>企業(yè)</b>基礎(chǔ)設(shè)施

    英偉達(dá)推出基石世界模型Cosmos,解決智機(jī)器人具身智能訓(xùn)練數(shù)據(jù)問(wèn)題

    。Cosmos 世界基礎(chǔ)模型(WFM)使開(kāi)發(fā)者能夠輕松生成大量基于物理學(xué)的逼真合成數(shù)據(jù),以用于訓(xùn)練和評(píng)估其現(xiàn)有的模型。開(kāi)發(fā)者還可以通過(guò)微調(diào) Cosmos WFM 構(gòu)建自定義模型。 為加速機(jī)器人和自動(dòng)駕駛
    的頭像 發(fā)表于 01-14 11:04 ?1287次閱讀
    英偉達(dá)推出基石世界模型Cosmos,解決智<b class='flag-5'>駕</b>與<b class='flag-5'>機(jī)器人</b>具身<b class='flag-5'>智能</b>訓(xùn)練數(shù)據(jù)問(wèn)題

    自然語(yǔ)言處理在聊天機(jī)器人中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,聊天機(jī)器人已經(jīng)成為我們?nèi)粘I钪胁豢苫蛉钡囊徊糠?。從客戶服?wù)到個(gè)人助理,聊天機(jī)器人的應(yīng)用范圍越來(lái)越廣泛。這些機(jī)器人能夠理解用戶的查詢,并提供及時(shí)、準(zhǔn)確的回答
    的頭像 發(fā)表于 12-05 15:24 ?1199次閱讀

    NLP技術(shù)在聊天機(jī)器人中的作用

    聊天機(jī)器人,也稱為聊天AI,是一種通過(guò)文本或語(yǔ)音與人類(lèi)進(jìn)行交流的軟件。它們廣泛應(yīng)用于客戶服務(wù)、在線購(gòu)物、個(gè)人助理等領(lǐng)域。NLP技術(shù)是實(shí)現(xiàn)聊天機(jī)器人
    的頭像 發(fā)表于 11-11 10:33 ?1036次閱讀

    ChatGPT 與傳統(tǒng)聊天機(jī)器人的比較

    近年來(lái)最受矚目的一個(gè)。 一、技術(shù)基礎(chǔ) 1.1 傳統(tǒng)聊天機(jī)器人 傳統(tǒng)聊天機(jī)器人通?;谝?guī)則引擎構(gòu)建,這意味著它們通過(guò)預(yù)設(shè)的腳本和關(guān)鍵詞來(lái)響應(yīng)用戶的輸入。這些機(jī)器人在處理特定、預(yù)
    的頭像 發(fā)表于 10-25 16:16 ?1255次閱讀

    Meta人工智能聊天機(jī)器人進(jìn)軍新市場(chǎng),挑戰(zhàn)ChatGPT

    Meta近日宣布,其人工智能聊天機(jī)器人將進(jìn)軍21個(gè)新市場(chǎng),與OpenAI的ChatGPT展開(kāi)激烈競(jìng)爭(zhēng)。
    的頭像 發(fā)表于 10-11 16:29 ?646次閱讀

    Snapchat聊天機(jī)器人集成谷歌Gemini技術(shù)

    Snap與谷歌云的戰(zhàn)略合作再升級(jí),為Snapchat平臺(tái)注入了新的智能活力。雙方宣布,Snapchat的My AI聊天機(jī)器人將深度集成谷歌Gemini技術(shù),這一創(chuàng)新舉措標(biāo)志著Snapchat在人工
    的頭像 發(fā)表于 09-25 14:51 ?599次閱讀

    Meta將推出音頻版聊天機(jī)器人

    ,為旗下Meta AI聊天機(jī)器人注入明星之聲。這一音頻版本預(yù)計(jì)本周起在美國(guó)及全球其他英語(yǔ)市場(chǎng)率先上線,為用戶提供前所未有的語(yǔ)音交互體驗(yàn)。
    的頭像 發(fā)表于 09-24 15:18 ?701次閱讀

    聊天機(jī)器人初創(chuàng)公司Character.AI裁員至少5%

    聊天機(jī)器人初創(chuàng)企業(yè)Character.AI近期宣布了一項(xiàng)裁員決定,涉及員工比例至少達(dá)到5%,主要受影響的是營(yíng)銷(xiāo)和招聘團(tuán)隊(duì)。此次調(diào)整被視為公司在面對(duì)市場(chǎng)變化時(shí)做出的戰(zhàn)略優(yōu)化,旨在更加高效地配置資源,以支持其長(zhǎng)期發(fā)展愿景。
    的頭像 發(fā)表于 08-30 15:37 ?577次閱讀

    馬斯克旗下AI初創(chuàng)公司發(fā)布Grok-2聊天機(jī)器人

    埃隆·馬斯克麾下的創(chuàng)新AI企業(yè)xAI今日震撼發(fā)布了其最新力作——Grok-2聊天機(jī)器人,該產(chǎn)品在性能上自信地宣稱已能與業(yè)界巨頭OpenAI、谷歌及Anthropic的頂尖產(chǎn)品并駕齊驅(qū)。
    的頭像 發(fā)表于 08-15 16:05 ?1168次閱讀

    Meta關(guān)閉明星AI聊天機(jī)器人,轉(zhuǎn)向用戶自創(chuàng)AI工具

    7月31日,科技新聞源The Information透露,Meta已悄然終止了其備受矚目的明星AI聊天機(jī)器人項(xiàng)目。這些機(jī)器人曾因能夠模擬著名人物的性格特征并與用戶進(jìn)行互動(dòng),在去年九月的Meta Connect大會(huì)上大放異彩。
    的頭像 發(fā)表于 07-31 16:16 ?1061次閱讀

    NVIDIA NeMo加速并簡(jiǎn)化自定義模型開(kāi)發(fā)

    如果企業(yè)希望充分發(fā)揮出 AI 的力量,就需要根據(jù)其行業(yè)需求量身定制的自定義模型。
    的頭像 發(fā)表于 07-26 11:17 ?1263次閱讀
    <b class='flag-5'>NVIDIA</b> NeMo加速并簡(jiǎn)化<b class='flag-5'>自定義</b>模型開(kāi)發(fā)

    NVIDIA AI Foundry 為全球企業(yè)打造自定義 Llama 3.1 生成式 AI 模型

    Foundry 提供從數(shù)據(jù)策管、合成數(shù)據(jù)生成、微調(diào)、檢索、防護(hù)到評(píng)估的全方位生成式 AI 模型服務(wù),以便部署自定義 Llama 3.1 NVIDIA NIM 微服務(wù)和新的 NVIDIA
    發(fā)表于 07-24 09:39 ?920次閱讀
    <b class='flag-5'>NVIDIA</b> <b class='flag-5'>AI</b> Foundry 為全球<b class='flag-5'>企業(yè)</b>打造<b class='flag-5'>自定義</b> Llama 3.1 生成式 <b class='flag-5'>AI</b> 模型