一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

OpenAI“政變”進(jìn)行時(shí),“百模大戰(zhàn)”接下來該戰(zhàn)什么?

腦極體 ? 來源:腦極體 ? 作者:腦極體 ? 2023-11-21 18:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

這兩天AI圈最熱鬧的消息,應(yīng)該就OpenAI高層內(nèi)訌,標(biāo)志性人物、原CEO Sam Altman被董事會(huì)解雇,數(shù)位科學(xué)家和高層離職。

關(guān)于“政變”的原因,坊間有很多傳言,比如商業(yè)化和非營(yíng)利原則的矛盾??傊录嚓P(guān)者在輿論場(chǎng)拉扯,吃瓜群眾則瞪大了眼睛看戲。這場(chǎng)風(fēng)波會(huì)給全球AI研發(fā),尤其是大模型帶來什么影響,還是未知數(shù)。

有人做了一個(gè)梗圖,大模型廠商亂成一鍋粥,只有賣卡的英偉達(dá)穩(wěn)坐釣魚臺(tái)。

wKgaomVchGuAfhtEAADmoZ6UD6w515.jpg

任它天邊云卷云舒,可以肯定的是,中國(guó)的AI大模型在取得廣泛成就的基礎(chǔ)上,會(huì)繼續(xù)向前發(fā)展,釋放產(chǎn)業(yè)價(jià)值,并且不會(huì)一味照搬海外,尤其是OpenAI的模式。

帶著這份淡定,我們將目光聚焦在國(guó)產(chǎn)大模型,會(huì)發(fā)現(xiàn)“百模大戰(zhàn)”熱潮中,還缺乏對(duì)各類大模型全面、分層、真實(shí)的能力評(píng)估。

通用大模型、行業(yè)大模型,都在比拼參數(shù)規(guī)模,但訓(xùn)練數(shù)據(jù)質(zhì)量不確定,僅憑參數(shù),行業(yè)客戶和用戶也難以選對(duì)適合的大模型。

那么看榜單呢?基準(zhǔn)測(cè)試benchmark和標(biāo)準(zhǔn)化數(shù)據(jù)集,可以針對(duì)性調(diào)優(yōu),榜單無法反映實(shí)際應(yīng)用效果差距。

而且大模型在不同任務(wù)場(chǎng)景下,表現(xiàn)的區(qū)分度很大。一位開發(fā)者說,“現(xiàn)在就是告訴你都有哪些大模型,實(shí)際效果還是得靠自己測(cè)測(cè)看”。

據(jù)中國(guó)信通院的數(shù)據(jù)顯示,目前的大模型測(cè)試方法和數(shù)據(jù)集已有200多個(gè)。想要一個(gè)個(gè)測(cè)過來,會(huì)給用戶帶來非常繁重的工作量。

“百模大戰(zhàn)”亂花漸欲迷人眼,那么,除了“跑分”打榜和參數(shù)“碾壓”,還有什么辦法來真實(shí)且有效地評(píng)判一個(gè)大模型的水平呢?

有必要來聊聊,“百模大戰(zhàn)”,不同賽道都在戰(zhàn)什么?

大模型,不看高分看高能

所謂“百模大戰(zhàn)”,并不是每個(gè)大模型都在做著同樣的事。其中,既有想做基座模型basemodle的通用大模型,如百度的文心、阿里的通義、騰訊的混元、華為的盤古、訊飛的星火、智譜的ChatGLM等,也有面向行業(yè)、場(chǎng)景的垂直大模型,目前在金融、教育、工業(yè)、傳媒、政務(wù)等多個(gè)領(lǐng)域都大量涌現(xiàn)。

不同賽道的大模型,其核心競(jìng)爭(zhēng)力也不一樣。比如一味拼算法的打榜,對(duì)于行業(yè)大模型來說,可以作為一種宣傳手段和“炫技”,但實(shí)際效果才是用戶最關(guān)注的。

目前不少開發(fā)者反映,各類大模型都存在各自的問題。

1.基座模型,本身能力有限制。

提到通用大模型,大家可能第一時(shí)間想到的就是推理能力,這也是大模型基準(zhǔn)測(cè)試的主要指標(biāo)。但在實(shí)際應(yīng)用中,尤其是文科類型任務(wù),大家不會(huì)沒事出“腦筋急轉(zhuǎn)彎”來測(cè)試通用大模型的邏輯推理能力,而是更希望大模型在復(fù)雜任務(wù)和上下文長(zhǎng)度上,有更可靠的表現(xiàn)。

比如寫一篇演講文稿,篇幅一長(zhǎng)就開始胡說八道或泛泛而談,文本的采用率下降;為AIGC配字幕,不能整篇生成,還需要人工將文案切割成片;編寫一個(gè)程序,半路開始network error……這些都是實(shí)際應(yīng)用中,大家比較關(guān)注的通用大模型的能力。

2.行業(yè)大模型,領(lǐng)域壁壘難翻越。

“百模大戰(zhàn)”進(jìn)行到當(dāng)下,很多行業(yè)開發(fā)者和企業(yè)都意識(shí)到,獨(dú)有的數(shù)據(jù)和場(chǎng)景,才是自己的護(hù)城河,開始打造定制化的大模型,而領(lǐng)域知識(shí)不夠,難以形成滿足某一領(lǐng)域需求的行業(yè)向產(chǎn)品。

比如大模型與行業(yè)知識(shí)不匹配、許多行業(yè)know-how還沒有知識(shí)化、傳統(tǒng)的知識(shí)圖譜與大模型的協(xié)同設(shè)計(jì)等,知識(shí)計(jì)算的能力不夠強(qiáng),就無法真正撼動(dòng)領(lǐng)域壁壘,讓大模型解決實(shí)際的業(yè)務(wù)問題。

3.有用性,ROI是個(gè)謎。

大模型的實(shí)際應(yīng)用效果難以評(píng)估,其中一個(gè)主要原因,就是模型生成結(jié)果的有用性(采用率、可用率等指標(biāo)),涉及大量多模態(tài)數(shù)據(jù)。

金融、醫(yī)藥、交通、城市等產(chǎn)業(yè)中,存在著大量多模態(tài)信息,比如客服電話的語(yǔ)音、醫(yī)學(xué)影像圖片、傳感器數(shù)據(jù)等,大語(yǔ)言模型必須具備多模態(tài)理解能力,將多模態(tài)信息與語(yǔ)言進(jìn)行綜合分析處理,才能保證較高質(zhì)量的輸出。

在實(shí)際任務(wù)中,上述三種問題可能會(huì)同時(shí)存在,要同時(shí)解決。

一位醫(yī)藥專家告訴我,在研發(fā)醫(yī)學(xué)影像的算法時(shí),就需要基座大模型在預(yù)訓(xùn)練階段就具備多模態(tài)理解能力、醫(yī)學(xué)影像知識(shí),可以執(zhí)行通用任務(wù)。同時(shí),行業(yè)側(cè)還需要根據(jù)知識(shí)設(shè)計(jì)目標(biāo)函數(shù),在特征抽取、相似性度量、迭代優(yōu)化算法等,都要貢獻(xiàn)好各自的知識(shí),才可能訓(xùn)練出一個(gè)對(duì)醫(yī)務(wù)工作者友好的領(lǐng)域大模型,不需要專業(yè)知識(shí),也不需要建模,就能上手使用。

就像工業(yè)革命的開始,是因?yàn)橥咛馗牧剂苏羝麢C(jī)。在此之前,蒸汽機(jī)早已被發(fā)明出來了,但一直沒有解決大規(guī)模高可用的問題,大模型也是如此。

大模型產(chǎn)業(yè)化,必須從基準(zhǔn)測(cè)試的“跑高分”,向可信賴的“高能力”進(jìn)化。

百模大戰(zhàn),究竟在戰(zhàn)哪些能力?

從高分到高能,讓大模型具有與行業(yè)結(jié)合的可行性,也讓“百模大戰(zhàn)”正在進(jìn)入新的階段。

從產(chǎn)業(yè)實(shí)際需求來看,可用且有效的大模型,至少應(yīng)該具備幾個(gè)核心能力:

1.長(zhǎng)文能力。

大語(yǔ)言模型的技術(shù)特點(diǎn),被認(rèn)為是“鸚鵡學(xué)舌”,將輸入信號(hào)拼湊成有一定語(yǔ)法結(jié)構(gòu)的句子,也就是文本補(bǔ)全能力。而大模型都有“幻覺”,上下文窗口的長(zhǎng)度增加,邏輯幻覺就可能越嚴(yán)重,“鸚鵡學(xué)舌”開始變得吃力。

在很多垂直行業(yè)應(yīng)用中,如金融、法律、財(cái)務(wù)、營(yíng)銷等,長(zhǎng)文檔的分析處理和生成能力是剛需。

在長(zhǎng)文中保持邏輯的連貫性、合理性,考驗(yàn)著大模型的綜合能力,比如對(duì)復(fù)雜語(yǔ)句的理解及記憶能力,生成的可靠性,這也是大模型走向產(chǎn)業(yè)化的核心。

目前,無論開源、閉源大模型,都將長(zhǎng)文能力作為一個(gè)核心競(jìng)爭(zhēng)力。比如流行的開源大模型Llama 2,就將上下文長(zhǎng)度擴(kuò)展至 128k,而基于LLaMA架構(gòu)的零一萬物的Yi系列大模型,此前曾宣稱拿下了全球最長(zhǎng)上下文窗口寶座,達(dá)到200K,可直接處理40萬漢字超長(zhǎng)文本輸入。閉源大模型中,GPT-4 Turbo支持了比ChatGPT更長(zhǎng)的上下文(128k tokens),百度的文心大模型通過對(duì)話增強(qiáng),提升上下文理解能力。

2.知識(shí)能力。

大模型“大力出奇跡”的模式,忽略了模型準(zhǔn)確感知和理解注入知識(shí)的能力,目前已經(jīng)凸顯了很多問題。比如不理解領(lǐng)域知識(shí),在實(shí)際業(yè)務(wù)中表現(xiàn)不佳,無法滿足ToB用戶的需求。因此,當(dāng)歐美科技公司依然在執(zhí)著追求更大參數(shù)時(shí),百度、華為等國(guó)內(nèi)大模型廠商,開始轉(zhuǎn)向了行業(yè)場(chǎng)景,將強(qiáng)業(yè)務(wù)知識(shí)引入文心、盤古的行業(yè)大模型之中,來提升大模型在行業(yè)任務(wù)中的應(yīng)用效果。

具體是怎么做的呢?以“行業(yè)知識(shí)增強(qiáng)”為核心特色的文心,是在預(yù)訓(xùn)練大模型的基礎(chǔ)上,進(jìn)一步融合大規(guī)模知識(shí)圖譜,挖掘行業(yè)應(yīng)用場(chǎng)景中大量存在的行業(yè)特色數(shù)據(jù)與知識(shí),再結(jié)合行業(yè)專家的知識(shí),從大規(guī)模知識(shí)和海量數(shù)據(jù)中融合學(xué)習(xí),把知識(shí)內(nèi)化至模型參數(shù)中。

當(dāng)用戶輸入問題時(shí),文心4.0會(huì)拆解回答問題所需的知識(shí)點(diǎn),進(jìn)而在搜索引擎、知識(shí)圖譜、數(shù)據(jù)庫(kù)中查找準(zhǔn)確知識(shí),再將知識(shí)組裝進(jìn)Prompt送入大模型。另一方面,大模型還將對(duì)輸出結(jié)果進(jìn)行反思,從生成結(jié)果總結(jié)知識(shí)點(diǎn),進(jìn)而通過以上方式進(jìn)行確認(rèn)驗(yàn)證,對(duì)結(jié)果差錯(cuò)進(jìn)行修正。

目前來看,在同等參數(shù)規(guī)模下,知識(shí)增強(qiáng)的深度語(yǔ)意理解,效果大幅超越了純粹用深度學(xué)習(xí)的方法,推理效率更高,并且可解釋性更強(qiáng),更符合產(chǎn)業(yè)對(duì)可信AI的需求。

目前,知識(shí)+大模型還有許多細(xì)節(jié)有待解決,比如知識(shí)體系的構(gòu)建,知識(shí)的持續(xù)獲取,知識(shí)應(yīng)用和推理等,這些問題的攻克都會(huì)給行業(yè)認(rèn)知智能帶來重大機(jī)會(huì)。

3.多模態(tài)能力。

2022年我參加華為云AI院長(zhǎng)峰會(huì),一位科學(xué)家提到,大模型有一個(gè)問題,就是有很多符號(hào)領(lǐng)域,大模型根本就不理解。他認(rèn)為,大模型是數(shù)據(jù)與知識(shí)雙輪驅(qū)動(dòng)的,雙輪驅(qū)動(dòng)是未來人工智能發(fā)展的重要模式。

前面我們說了知識(shí)能力的重要性,那么“數(shù)據(jù)”究竟拼的是什么呢?就是多模態(tài)能力。

把大模型應(yīng)用到領(lǐng)域的時(shí)候,會(huì)發(fā)現(xiàn)問題非常多,根本達(dá)不到預(yù)期的效果。一個(gè)主要原因,大語(yǔ)言模型完全是基于語(yǔ)言的,而真實(shí)世界的復(fù)雜任務(wù),有大量的數(shù)值、圖表、語(yǔ)音、視頻等多模態(tài)數(shù)據(jù),數(shù)據(jù)的多模態(tài)特性增加了模型處理、建模和推理的復(fù)雜性。

一位醫(yī)療模型的開發(fā)者告訴我,醫(yī)療任務(wù)分析非常繁雜,數(shù)量級(jí)很多,有不同模態(tài)、病種,每一種模態(tài)有不同的診療任務(wù),要把文本、圖像等多模態(tài)包容過來,而醫(yī)療領(lǐng)域非常缺少多模態(tài)的預(yù)訓(xùn)練模型。

大模型要在實(shí)際業(yè)務(wù)中達(dá)到與人更接近的能力,也需要跨模態(tài)建立統(tǒng)一認(rèn)知。

舉個(gè)例子,AIGC生成營(yíng)銷活動(dòng)物料,根據(jù)文字描述生成圖像、視頻,既要精確理解提示詞的語(yǔ)義,還要符合領(lǐng)域規(guī)范,不能出現(xiàn)不合規(guī)的素材,同時(shí)要控制生成內(nèi)容的質(zhì)量,保持跨模態(tài)的語(yǔ)義一致性。

國(guó)產(chǎn)大模型在多模態(tài)領(lǐng)域也做了很多差異化探索,除了大家熟悉的以文生圖,在醫(yī)療影像、遙感、抗體藥物、交通等領(lǐng)域,跨模態(tài)技術(shù)融合也在快速開展,未來會(huì)是基座大模型和行業(yè)大模型的亮點(diǎn)。

從這些產(chǎn)業(yè)需要的能力來看,大模型的產(chǎn)業(yè)屬性和價(jià)值已經(jīng)清晰展露了出來。

大模型,絕不是聊聊天、搞怪圖片那么膚淺,技術(shù)覆蓋區(qū)域是很廣闊的,技術(shù)應(yīng)用價(jià)值已經(jīng)足夠具有說服力。

但也必須承認(rèn),目前,絕大多數(shù)產(chǎn)業(yè)所獲取的技術(shù)能力和技術(shù)深度,都還遠(yuǎn)遠(yuǎn)不夠。一方面受限于上游的基座大模型能力,同時(shí)也缺乏深度定制化的中游服務(wù)商,導(dǎo)致用戶大多只能調(diào)用簡(jiǎn)單化、標(biāo)準(zhǔn)化的API,而難以將領(lǐng)域知識(shí)、多模態(tài)數(shù)據(jù)與大模型深度結(jié)合。

未來,從高分到高能,國(guó)產(chǎn)大模型一定會(huì)依靠自身的差異化技術(shù)路線,以及中國(guó)豐富多樣的產(chǎn)業(yè)需求,從懵懂走向成熟,甚至先于歐美,走向千行百業(yè)

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35143

    瀏覽量

    279826
  • OpenAI
    +關(guān)注

    關(guān)注

    9

    文章

    1208

    瀏覽量

    8919
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    Omdia 林麟:2025 年 AI 眼鏡市場(chǎng)將呈現(xiàn)大戰(zhàn)

    大戰(zhàn)”。 ? 在這場(chǎng)“大戰(zhàn)”中,中國(guó)廠商是重要的力量。根據(jù)Omdia的統(tǒng)計(jì)數(shù)據(jù),2024年全球AI眼鏡的出貨量大概是190 萬副,2025年將增長(zhǎng)到約 680 萬副。其中,Meta將是全球AI眼鏡發(fā)展的領(lǐng)軍者,預(yù)計(jì)將會(huì)占據(jù)
    發(fā)表于 04-16 15:06 ?349次閱讀

    AI眼鏡大模型激戰(zhàn):多大模型協(xié)同、交互時(shí)延低至1.3S

    電子發(fā)燒友網(wǎng)報(bào)道(文/莫婷婷)“大戰(zhàn)”開始時(shí),也是AI大模型在智能眼鏡端加速落地的開始,一場(chǎng)關(guān)于智能眼鏡的“大戰(zhàn)”也同步
    的頭像 發(fā)表于 03-20 08:59 ?1292次閱讀
    AI眼鏡大模型激戰(zhàn):多大模型協(xié)同、交互時(shí)延低至1.3S

    OpenAI度開啟大模型5.0競(jìng)賽,并宣布全面免費(fèi)

    的文心系列模型。 與此同時(shí),OpenAI也傳來了重磅消息。北京時(shí)間2月13日凌晨3點(diǎn),OpenAI的首席執(zhí)行官Sam Altman通過社交媒體宣布,GPT-4.5/5將很快陸續(xù)發(fā)布,并且免費(fèi)版的ChatGPT將在標(biāo)準(zhǔn)智能設(shè)置下無限制地使用GPT-5
    的頭像 發(fā)表于 02-14 09:38 ?482次閱讀

    OpenAI CEO預(yù)告GPT-4.5及GPT-5未來規(guī)劃

    近日,OpenAI的首席執(zhí)行官薩姆·奧爾特曼(Sam Altman)放出了一則令人矚目的更新預(yù)告,透露了GPT-4.5和GPT-5的未來規(guī)劃。 據(jù)奧爾特曼透露,OpenAI將在接下來的幾個(gè)月內(nèi)推出
    的頭像 發(fā)表于 02-13 10:02 ?441次閱讀

    使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)是一種常見且有效的方法。以下是一個(gè)基于BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)的詳細(xì)步驟和考慮因素: 一、數(shù)據(jù)準(zhǔn)備 收集數(shù)據(jù) : 收集用于訓(xùn)練
    的頭像 發(fā)表于 02-12 16:44 ?770次閱讀

    OpenAI即將推出o3 mini推理AI模型

    計(jì)劃在接下來的幾周內(nèi)正式推出這一創(chuàng)新成果。 這一消息無疑為人工智能領(lǐng)域注入了新的活力。作為OpenAI的最新力作,o3 mini推理AI模型在技術(shù)上實(shí)現(xiàn)了諸多突破,旨在為用戶提供更加高效、精準(zhǔn)的推理服務(wù)。通過采用先進(jìn)的算法和模型架構(gòu),o3 mini能夠在復(fù)雜多變的應(yīng)用場(chǎng)景
    的頭像 發(fā)表于 01-20 10:54 ?568次閱讀

    【飛凌嵌入式OK3588J-C開發(fā)板體驗(yàn)】OK3588J-C開發(fā)板的支持RKMPP的FFmpeg移植

    install 接下來,我們還需要進(jìn)行安裝,注意在安裝時(shí)是需要root權(quán)限的! 然后我們?cè)倬幾grkrga,因?yàn)?b class='flag-5'>接下來我們還會(huì)需要meson,所以也需要提前安裝好。 cd ~/ffmpeg sudo apt
    發(fā)表于 12-30 08:57

    OpenAI考慮取消AGI條款

    近日,據(jù)英國(guó)《金融時(shí)報(bào)》報(bào)道,OpenAI正在與微軟就一項(xiàng)重要條款進(jìn)行磋商,該條款涉及未來通用人工智能(AGI)技術(shù)的使用權(quán)。 據(jù)了解,OpenAI與微軟此前簽訂的合同中,包含了一項(xiàng)關(guān)于通用
    的頭像 發(fā)表于 12-09 14:35 ?651次閱讀

    OpenAI連續(xù)12天直播,揭秘新產(chǎn)品與功能

    近日,OpenAI CEO奧特曼在社交媒體上宣布了一項(xiàng)令人期待的計(jì)劃:在接下來的12天內(nèi),OpenAI將每天舉辦一場(chǎng)直播活動(dòng),用于發(fā)布和演示其最新的產(chǎn)品及功能。 據(jù)奧特曼透露,這次直播活動(dòng)將從
    的頭像 發(fā)表于 12-05 11:12 ?840次閱讀

    剖析Air724UG的硬件設(shè)計(jì),有大發(fā)現(xiàn)?04篇

    接下來分享第四部分。
    的頭像 發(fā)表于 10-25 17:42 ?1422次閱讀
    剖析Air724UG的硬件設(shè)計(jì),有大發(fā)現(xiàn)?04篇

    使用IBIS模型進(jìn)行時(shí)序分析

    電子發(fā)燒友網(wǎng)站提供《使用IBIS模型進(jìn)行時(shí)序分析.pdf》資料免費(fèi)下載
    發(fā)表于 10-21 10:00 ?1次下載
    使用IBIS模型<b class='flag-5'>進(jìn)行時(shí)</b>序分析

    人工智能熱潮減退,微軟或?qū)⒃谌陜?nèi)收購(gòu)OpenAI

    10月11日,福布斯發(fā)布消息稱,CCS Insight的首席分析師Ben Wood在接受其采訪時(shí)預(yù)測(cè),微軟或?qū)⒃?b class='flag-5'>接下來的三年內(nèi)收購(gòu)ChatGPT的開發(fā)者OpenAI。這一預(yù)測(cè)基于AI領(lǐng)域的炒作熱度
    的頭像 發(fā)表于 10-11 17:26 ?1253次閱讀

    【龍芯2K0300蜂鳥板試用】+6.QT體驗(yàn)

    經(jīng)內(nèi)置。 2.Qt配置 打開軟件,點(diǎn)擊工具下的選項(xiàng),選擇QTVersion。 選擇編譯器: 接下來選擇龍芯架構(gòu) 在控件區(qū)域拖動(dòng)控件,進(jìn)行簡(jiǎn)單測(cè)試: 接下來進(jìn)行編譯,查看debug下生產(chǎn)
    發(fā)表于 08-21 22:20

    OpenAI自研芯片計(jì)劃調(diào)整,傳交臺(tái)積電生產(chǎn)

    近日,全球領(lǐng)先的生成式AI應(yīng)用大廠OpenAI在自研芯片領(lǐng)域迎來了重大戰(zhàn)略調(diào)整。為降低對(duì)外部AI芯片的依賴,OpenAI原本計(jì)劃募資自建晶圓廠,以自主設(shè)計(jì)并生產(chǎn)高性能AI芯片。然而,在與臺(tái)積電深入接觸后,這一計(jì)劃發(fā)生了顯著變化。
    的頭像 發(fā)表于 07-23 16:52 ?966次閱讀