一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

預(yù)訓(xùn)練和遷移學(xué)習(xí)的區(qū)別和聯(lián)系

CHANBAEK ? 來(lái)源:網(wǎng)絡(luò)整理 ? 2024-07-11 10:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

預(yù)訓(xùn)練和遷移學(xué)習(xí)是深度學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域中的兩個(gè)重要概念,它們?cè)谔岣吣P托阅?、減少訓(xùn)練時(shí)間和降低對(duì)數(shù)據(jù)量的需求方面發(fā)揮著關(guān)鍵作用。本文將從定義、原理、應(yīng)用、區(qū)別和聯(lián)系等方面詳細(xì)探討預(yù)訓(xùn)練和遷移學(xué)習(xí)。

一、預(yù)訓(xùn)練(Pre-training)

1. 定義

預(yù)訓(xùn)練是指在大規(guī)模數(shù)據(jù)集上對(duì)深度學(xué)習(xí)模型進(jìn)行初步訓(xùn)練的過(guò)程。這個(gè)過(guò)程旨在使模型學(xué)習(xí)到通用的、泛化的特征表示,以便在后續(xù)的具體任務(wù)中能夠更快地收斂并達(dá)到更好的性能。預(yù)訓(xùn)練可以分為無(wú)監(jiān)督預(yù)訓(xùn)練和有監(jiān)督預(yù)訓(xùn)練兩種形式。

  • 無(wú)監(jiān)督預(yù)訓(xùn)練 :在沒(méi)有標(biāo)簽的數(shù)據(jù)集上進(jìn)行訓(xùn)練,通過(guò)自編碼器、變分自編碼器、對(duì)比學(xué)習(xí)等方法,使模型學(xué)習(xí)到數(shù)據(jù)的內(nèi)在結(jié)構(gòu)和特征。
  • 有監(jiān)督預(yù)訓(xùn)練 :在包含標(biāo)簽的數(shù)據(jù)集上進(jìn)行訓(xùn)練,通過(guò)分類(lèi)、回歸等任務(wù)使模型學(xué)習(xí)到數(shù)據(jù)的特征表示和標(biāo)簽之間的映射關(guān)系。

2. 原理

預(yù)訓(xùn)練的原理在于,通過(guò)在大規(guī)模數(shù)據(jù)集上的訓(xùn)練,模型能夠?qū)W習(xí)到數(shù)據(jù)中的通用特征,這些特征對(duì)于許多任務(wù)都是有用的。這些特征可以看作是數(shù)據(jù)的一種低維表示,能夠捕捉到數(shù)據(jù)中的關(guān)鍵信息,同時(shí)去除冗余和噪聲。在后續(xù)的任務(wù)中,預(yù)訓(xùn)練的模型可以作為初始化參數(shù),通過(guò)微調(diào)(fine-tuning)來(lái)適應(yīng)新的任務(wù)和數(shù)據(jù)集。

3. 應(yīng)用

預(yù)訓(xùn)練在多個(gè)領(lǐng)域都有廣泛的應(yīng)用,特別是在計(jì)算機(jī)視覺(jué)(CV)和自然語(yǔ)言處理(NLP)領(lǐng)域。例如,在CV領(lǐng)域,常用的預(yù)訓(xùn)練模型包括VGG、ResNet、Inception等,這些模型在ImageNet等大型數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,并提供了豐富的特征表示。在NLP領(lǐng)域,BERT、GPT等預(yù)訓(xùn)練語(yǔ)言模型通過(guò)在大規(guī)模文本數(shù)據(jù)上進(jìn)行訓(xùn)練,提供了強(qiáng)大的文本表示能力,廣泛應(yīng)用于文本分類(lèi)、情感分析、問(wèn)答系統(tǒng)等任務(wù)。

二、遷移學(xué)習(xí)(Transfer Learning)

1. 定義

遷移學(xué)習(xí)是一種機(jī)器學(xué)習(xí)方法,它允許將在一個(gè)任務(wù)上學(xué)到的知識(shí)遷移到另一個(gè)相關(guān)但不同的任務(wù)上。遷移學(xué)習(xí)的核心思想是,通過(guò)利用已有任務(wù)的知識(shí)來(lái)加速新任務(wù)的學(xué)習(xí)過(guò)程,并提高新任務(wù)的性能。

2. 原理

遷移學(xué)習(xí)的原理在于,不同任務(wù)之間往往存在某種程度的相似性,這種相似性使得一個(gè)任務(wù)上學(xué)到的知識(shí)可以在另一個(gè)任務(wù)上得到應(yīng)用。具體來(lái)說(shuō),遷移學(xué)習(xí)可以分為基于模型的遷移、基于特征的遷移和基于關(guān)系的遷移三種形式。

  • 基于模型的遷移 :直接使用源任務(wù)的預(yù)訓(xùn)練模型作為目標(biāo)任務(wù)的起點(diǎn),通過(guò)微調(diào)模型參數(shù)來(lái)適應(yīng)新任務(wù)。
  • 基于特征的遷移 :從源任務(wù)中提取特征表示,然后在這些特征上訓(xùn)練目標(biāo)任務(wù)的模型。
  • 基于關(guān)系的遷移 :從源任務(wù)中學(xué)習(xí)數(shù)據(jù)間的關(guān)系,然后將這種關(guān)系應(yīng)用到目標(biāo)任務(wù)中。

3. 應(yīng)用

遷移學(xué)習(xí)在多個(gè)領(lǐng)域都有廣泛的應(yīng)用,特別是在數(shù)據(jù)量較少或標(biāo)注成本較高的任務(wù)中。例如,在醫(yī)學(xué)圖像處理中,由于醫(yī)學(xué)圖像數(shù)據(jù)稀缺且標(biāo)注復(fù)雜,遷移學(xué)習(xí)被廣泛應(yīng)用于疾病診斷、病灶檢測(cè)等任務(wù)中。通過(guò)利用在大型自然圖像數(shù)據(jù)集上預(yù)訓(xùn)練的模型,可以顯著提高醫(yī)學(xué)圖像處理的性能。此外,在語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域,遷移學(xué)習(xí)也發(fā)揮著重要作用。

三、預(yù)訓(xùn)練和遷移學(xué)習(xí)之間的區(qū)別和聯(lián)系

區(qū)別

  1. 目的不同 :預(yù)訓(xùn)練的主要目的是通過(guò)在大規(guī)模數(shù)據(jù)集上的訓(xùn)練,使模型學(xué)習(xí)到通用的特征表示;而遷移學(xué)習(xí)的目的是將已有任務(wù)的知識(shí)遷移到新的任務(wù)上,以提高新任務(wù)的性能。
  2. 應(yīng)用場(chǎng)景不同 :預(yù)訓(xùn)練通常作為模型訓(xùn)練的一個(gè)階段,為后續(xù)的任務(wù)提供初始化參數(shù);而遷移學(xué)習(xí)則更側(cè)重于將已有任務(wù)的知識(shí)應(yīng)用到新的任務(wù)中,以解決數(shù)據(jù)量不足或標(biāo)注成本高昂的問(wèn)題。
  3. 實(shí)現(xiàn)方式不同 :預(yù)訓(xùn)練主要通過(guò)在大規(guī)模數(shù)據(jù)集上進(jìn)行訓(xùn)練來(lái)實(shí)現(xiàn);而遷移學(xué)習(xí)則可以通過(guò)多種方式實(shí)現(xiàn),包括基于模型的遷移、基于特征的遷移和基于關(guān)系的遷移等。

聯(lián)系

  1. 相互促進(jìn) :預(yù)訓(xùn)練和遷移學(xué)習(xí)在深度學(xué)習(xí)中相互促進(jìn)。預(yù)訓(xùn)練為遷移學(xué)習(xí)提供了豐富的特征表示和初始化參數(shù),使得遷移學(xué)習(xí)能夠更快地收斂并達(dá)到更好的性能;而遷移學(xué)習(xí)則進(jìn)一步驗(yàn)證了預(yù)訓(xùn)練模型的有效性和泛化能力。
  2. 共同目標(biāo) :預(yù)訓(xùn)練和遷移學(xué)習(xí)的共同目標(biāo)是提高模型的性能和效率。通過(guò)在大規(guī)模數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,模型能夠?qū)W習(xí)到通用的特征表示;通過(guò)遷移學(xué)習(xí),模型能夠?qū)⑦@些特征表示應(yīng)用到新的任務(wù)中,從而提高模型的泛化能力和適應(yīng)能力。
  3. 技術(shù)融合 :在實(shí)際應(yīng)用中,預(yù)訓(xùn)練和遷移學(xué)習(xí)往往相互融合、相互補(bǔ)充。例如,在NLP領(lǐng)域,預(yù)訓(xùn)練語(yǔ)言模型如BERT、GPT等通過(guò)在大規(guī)模文本數(shù)據(jù)上進(jìn)行預(yù)訓(xùn)練,提供了強(qiáng)大的文本表示能力;同時(shí),這些預(yù)訓(xùn)練模型也可以作為遷移學(xué)習(xí)的起點(diǎn),通過(guò)微調(diào)來(lái)適應(yīng)不同的NLP任務(wù)。

四、預(yù)訓(xùn)練和遷移學(xué)習(xí)的深入融合與應(yīng)用

1. 深度融合的策略

隨著技術(shù)的不斷發(fā)展,預(yù)訓(xùn)練和遷移學(xué)習(xí)之間的界限變得越來(lái)越模糊,兩者之間的深度融合成為了一種趨勢(shì)。這種融合不僅體現(xiàn)在技術(shù)層面,也體現(xiàn)在應(yīng)用層面。

  • 技術(shù)層面的融合 :現(xiàn)代深度學(xué)習(xí)框架和庫(kù)(如TensorFlow、PyTorch)提供了強(qiáng)大的工具來(lái)支持預(yù)訓(xùn)練和遷移學(xué)習(xí)的無(wú)縫結(jié)合。例如,這些框架允許開(kāi)發(fā)者輕松地加載預(yù)訓(xùn)練模型,并在新任務(wù)上對(duì)其進(jìn)行微調(diào)。此外,研究者還在不斷探索新的預(yù)訓(xùn)練方法和遷移學(xué)習(xí)技術(shù),如多任務(wù)學(xué)習(xí)、領(lǐng)域自適應(yīng)等,以進(jìn)一步提高模型的性能和泛化能力。
  • 應(yīng)用層面的融合 :在實(shí)際應(yīng)用中,預(yù)訓(xùn)練和遷移學(xué)習(xí)經(jīng)常被聯(lián)合使用以解決復(fù)雜的問(wèn)題。例如,在醫(yī)療圖像分析中,研究者可以先在大規(guī)模的自然圖像數(shù)據(jù)集上預(yù)訓(xùn)練一個(gè)深度學(xué)習(xí)模型,以學(xué)習(xí)到圖像的基本特征;然后,將這個(gè)預(yù)訓(xùn)練模型遷移到醫(yī)療圖像數(shù)據(jù)集上,并通過(guò)微調(diào)來(lái)適應(yīng)醫(yī)療圖像的特定特征。這種結(jié)合使用預(yù)訓(xùn)練和遷移學(xué)習(xí)的方法,可以顯著提高醫(yī)療圖像分析的準(zhǔn)確性和效率。

2. 面臨的挑戰(zhàn)與解決方案

盡管預(yù)訓(xùn)練和遷移學(xué)習(xí)在多個(gè)領(lǐng)域都取得了顯著的成果,但它們?nèi)匀幻媾R一些挑戰(zhàn)。以下是一些主要的挑戰(zhàn)及其解決方案:

  • 領(lǐng)域差異 :不同領(lǐng)域之間的數(shù)據(jù)分布和特征表示可能存在顯著差異,這可能導(dǎo)致預(yù)訓(xùn)練模型在新任務(wù)上的性能下降。為了解決這個(gè)問(wèn)題,研究者提出了領(lǐng)域自適應(yīng)(Domain Adaptation)的方法,通過(guò)調(diào)整預(yù)訓(xùn)練模型的參數(shù)或引入領(lǐng)域特定的特征來(lái)縮小領(lǐng)域間的差異。
  • 負(fù)遷移 :在某些情況下,預(yù)訓(xùn)練模型中的知識(shí)可能并不適用于新任務(wù),甚至可能對(duì)新任務(wù)產(chǎn)生負(fù)面影響,這種現(xiàn)象被稱為負(fù)遷移。為了避免負(fù)遷移,研究者需要仔細(xì)選擇預(yù)訓(xùn)練模型和目標(biāo)任務(wù)之間的相似性,并在微調(diào)過(guò)程中進(jìn)行充分的驗(yàn)證和評(píng)估。
  • 計(jì)算資源 :預(yù)訓(xùn)練和遷移學(xué)習(xí)通常需要大量的計(jì)算資源,包括高性能的計(jì)算設(shè)備和大規(guī)模的數(shù)據(jù)集。為了降低計(jì)算成本,研究者提出了多種優(yōu)化方法,如剪枝、量化、知識(shí)蒸餾等,以減小模型的規(guī)模和復(fù)雜度,提高訓(xùn)練效率。

3. 未來(lái)展望

隨著技術(shù)的不斷進(jìn)步和創(chuàng)新,預(yù)訓(xùn)練和遷移學(xué)習(xí)將在更多領(lǐng)域發(fā)揮重要作用。以下是一些可能的未來(lái)發(fā)展方向:

  • 更高效的預(yù)訓(xùn)練方法 :研究者將繼續(xù)探索更高效的預(yù)訓(xùn)練方法,以降低計(jì)算成本并提高預(yù)訓(xùn)練模型的性能。例如,通過(guò)引入自監(jiān)督學(xué)習(xí)、對(duì)比學(xué)習(xí)等新技術(shù),可以在沒(méi)有標(biāo)簽的情況下學(xué)習(xí)到更加豐富的特征表示。
  • 更靈活的遷移學(xué)習(xí)技術(shù) :為了應(yīng)對(duì)不同領(lǐng)域和任務(wù)之間的復(fù)雜性和多樣性,研究者將開(kāi)發(fā)更加靈活和通用的遷移學(xué)習(xí)技術(shù)。這些技術(shù)將能夠更好地適應(yīng)不同領(lǐng)域和任務(wù)之間的差異,并實(shí)現(xiàn)更高效的知識(shí)遷移。
  • 跨模態(tài)預(yù)訓(xùn)練和遷移學(xué)習(xí) :隨著多模態(tài)數(shù)據(jù)的不斷涌現(xiàn)(如圖像、文本、音頻等),跨模態(tài)預(yù)訓(xùn)練和遷移學(xué)習(xí)將成為未來(lái)的一個(gè)重要研究方向。通過(guò)利用多模態(tài)數(shù)據(jù)之間的互補(bǔ)性和關(guān)聯(lián)性,可以學(xué)習(xí)到更加全面和豐富的特征表示,并進(jìn)一步提高模型的性能和泛化能力。

總之,預(yù)訓(xùn)練和遷移學(xué)習(xí)是深度學(xué)習(xí)和機(jī)器學(xué)習(xí)領(lǐng)域中的兩個(gè)重要概念,它們?cè)谔岣吣P托阅?、減少訓(xùn)練時(shí)間和降低對(duì)數(shù)據(jù)量的需求方面發(fā)揮著關(guān)鍵作用。通過(guò)不斷的研究和創(chuàng)新,預(yù)訓(xùn)練和遷移學(xué)習(xí)將在更多領(lǐng)域展現(xiàn)其巨大的潛力和價(jià)值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    遷移學(xué)習(xí)訓(xùn)練網(wǎng)絡(luò)

    keras 之 遷移學(xué)習(xí),改變VGG16輸出層,用imagenet權(quán)重retrain
    發(fā)表于 09-09 11:02

    遷移學(xué)習(xí)

    神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法卷積神經(jīng)網(wǎng)絡(luò)介紹經(jīng)典網(wǎng)絡(luò)結(jié)構(gòu)介紹章節(jié)目標(biāo):深入了解神經(jīng)網(wǎng)絡(luò)的組成、訓(xùn)練和實(shí)現(xiàn),掌握深度空間特征分布等關(guān)鍵概念,為深度遷移學(xué)習(xí)奠定知識(shí)基礎(chǔ) 三、
    發(fā)表于 04-21 15:15

    遷移學(xué)習(xí)與模型預(yù)訓(xùn)練:何去何從

    把我們當(dāng)前要處理的NLP任務(wù)叫做T(T稱為目標(biāo)任務(wù)),遷移學(xué)習(xí)技術(shù)做的事是利用另一個(gè)任務(wù)S(S稱為源任務(wù))來(lái)提升任務(wù)T的效果,也即把S的信息遷移到T中。至于怎么遷移信息就有很多方法了,
    的頭像 發(fā)表于 07-18 11:29 ?8240次閱讀
    <b class='flag-5'>遷移</b><b class='flag-5'>學(xué)習(xí)</b>與模型<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>:何去何從

    基于預(yù)訓(xùn)練模型和長(zhǎng)短期記憶網(wǎng)絡(luò)的深度學(xué)習(xí)模型

    語(yǔ)義槽填充是對(duì)話系統(tǒng)中一項(xiàng)非常重要的任務(wù),旨在為輸入句子的毎個(gè)單詞標(biāo)注正確的標(biāo)簽,其性能的妤壞極大地影響著后續(xù)的對(duì)話管理模塊。目前,使用深度學(xué)習(xí)方法解決該任務(wù)時(shí),一般利用隨機(jī)詞向量或者預(yù)訓(xùn)練詞向量
    發(fā)表于 04-20 14:29 ?19次下載
    基于<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>模型和長(zhǎng)短期記憶網(wǎng)絡(luò)的深度<b class='flag-5'>學(xué)習(xí)</b>模型

    如何實(shí)現(xiàn)更綠色、經(jīng)濟(jì)的NLP預(yù)訓(xùn)練模型遷移

    NLP中,預(yù)訓(xùn)練大模型Finetune是一種非常常見(jiàn)的解決問(wèn)題的范式。利用在海量文本上預(yù)訓(xùn)練得到的Bert、GPT等模型,在下游不同任務(wù)上分別進(jìn)行finetune,得到下游任務(wù)的模型。
    的頭像 發(fā)表于 03-21 15:33 ?2511次閱讀

    遷移學(xué)習(xí)Finetune的四種類(lèi)型招式

    遷移學(xué)習(xí)廣泛地應(yīng)用于NLP、CV等各種領(lǐng)域,通過(guò)在源域數(shù)據(jù)上學(xué)習(xí)知識(shí),再遷移到下游其他目標(biāo)任務(wù)上,提升目標(biāo)任務(wù)上的效果。其中,Pretrain-Finetune(
    的頭像 發(fā)表于 04-02 17:35 ?3629次閱讀

    使用 NVIDIA TAO 工具套件和預(yù)訓(xùn)練模型加快 AI 開(kāi)發(fā)

    可以訪問(wèn)預(yù)訓(xùn)練模型的完整源代碼和模型權(quán)重。 該工具套件能夠高效訓(xùn)練視覺(jué)和對(duì)話式 AI 模型。由于簡(jiǎn)化了復(fù)雜的 AI 模型和深度學(xué)習(xí)框架,即便是不具備 AI 專(zhuān)業(yè)知識(shí)的開(kāi)發(fā)者也可以使用該
    的頭像 發(fā)表于 12-15 19:40 ?1345次閱讀

    什么是預(yù)訓(xùn)練 AI 模型?

    預(yù)訓(xùn)練 AI 模型是為了完成特定任務(wù)而在大型數(shù)據(jù)集上訓(xùn)練的深度學(xué)習(xí)模型。這些模型既可以直接使用,也可以根據(jù)不同行業(yè)的應(yīng)用需求進(jìn)行自定義。 如果要教一個(gè)剛學(xué)會(huì)走路的孩子什么是獨(dú)角獸,那么
    的頭像 發(fā)表于 04-04 01:45 ?1884次閱讀

    淺析4個(gè)計(jì)算機(jī)視覺(jué)領(lǐng)域常用遷移學(xué)習(xí)模型

    使用SOTA的預(yù)訓(xùn)練模型來(lái)通過(guò)遷移學(xué)習(xí)解決現(xiàn)實(shí)的計(jì)算機(jī)視覺(jué)問(wèn)題。
    的頭像 發(fā)表于 04-23 18:08 ?2420次閱讀
    淺析4個(gè)計(jì)算機(jī)視覺(jué)領(lǐng)域常用<b class='flag-5'>遷移</b><b class='flag-5'>學(xué)習(xí)</b>模型

    什么是預(yù)訓(xùn)練AI模型?

    預(yù)訓(xùn)練 AI 模型是為了完成特定任務(wù)而在大型數(shù)據(jù)集上訓(xùn)練的深度學(xué)習(xí)模型。這些模型既可以直接使用,也可以根據(jù)不同行業(yè)的應(yīng)用需求進(jìn)行自定義。
    的頭像 發(fā)表于 05-25 17:10 ?1475次閱讀

    NLP中的遷移學(xué)習(xí):利用預(yù)訓(xùn)練模型進(jìn)行文本分類(lèi)

    遷移學(xué)習(xí)徹底改變了自然語(yǔ)言處理(NLP)領(lǐng)域,允許從業(yè)者利用預(yù)先訓(xùn)練的模型來(lái)完成自己的任務(wù),從而大大減少了訓(xùn)練時(shí)間和計(jì)算資源。在本文中,我們將討論
    發(fā)表于 06-14 09:30 ?582次閱讀

    一文詳解遷移學(xué)習(xí)

    遷移學(xué)習(xí)需要將預(yù)訓(xùn)練好的模型適應(yīng)新的下游任務(wù)。然而,作者觀察到,當(dāng)前的遷移學(xué)習(xí)方法通常無(wú)法關(guān)注與
    的頭像 發(fā)表于 08-11 16:56 ?7129次閱讀
    一文詳解<b class='flag-5'>遷移</b><b class='flag-5'>學(xué)習(xí)</b>

    視覺(jué)深度學(xué)習(xí)遷移學(xué)習(xí)訓(xùn)練框架Torchvision介紹

    Torchvision是基于Pytorch的視覺(jué)深度學(xué)習(xí)遷移學(xué)習(xí)訓(xùn)練框架,當(dāng)前支持的圖像分類(lèi)、對(duì)象檢測(cè)、實(shí)例分割、語(yǔ)義分割、姿態(tài)評(píng)估模型的遷移
    的頭像 發(fā)表于 09-22 09:49 ?1304次閱讀
    視覺(jué)深度<b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>遷移</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>訓(xùn)練</b>框架Torchvision介紹

    預(yù)訓(xùn)練模型的基本原理和應(yīng)用

    訓(xùn)練好的模型,這些模型通常在某些通用任務(wù)上表現(xiàn)出色,并且可以作為后續(xù)特定任務(wù)的起點(diǎn),通過(guò)遷移學(xué)習(xí)或微調(diào)(Fine-tuning)等方式進(jìn)行適應(yīng)和優(yōu)化。以下是對(duì)預(yù)
    的頭像 發(fā)表于 07-03 18:20 ?4513次閱讀

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    鷺島論壇數(shù)據(jù)智能系列講座第4期「預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)」10月30日(周三)20:00精彩開(kāi)播期待與您云相聚,共襄學(xué)術(shù)盛宴!|直播信息報(bào)告題目預(yù)
    的頭像 發(fā)表于 10-18 08:09 ?598次閱讀
    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)模型下的持續(xù)<b class='flag-5'>學(xué)習(xí)</b>