一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大模型沒(méi)有“知識(shí)圍城”

腦極體 ? 來(lái)源:腦極體 ? 作者:腦極體 ? 2024-08-27 11:06 ? 次閱讀
wKgZombNQq6AMYaEAAl7e05UIyo071.jpg

最近,兩大知識(shí)平臺(tái)開(kāi)始“反擊”大模型。

一是知網(wǎng)。就是引發(fā)學(xué)術(shù)界震動(dòng)、開(kāi)啟“天臨元年”的那個(gè)知網(wǎng),要求秘塔AI搜索終止對(duì)他們內(nèi)容的搜索和鏈接。

二是知乎。網(wǎng)友發(fā)現(xiàn)在微軟必應(yīng)搜索、谷歌搜索的結(jié)果中,知乎內(nèi)容的標(biāo)題和正文都可能是亂碼,極大可能是為了避免內(nèi)容被用來(lái)訓(xùn)練AI模型。

這兩大平臺(tái)區(qū)別于其他互聯(lián)網(wǎng)社區(qū)的一大特點(diǎn),就是知識(shí)內(nèi)容豐富、質(zhì)量較高。

對(duì)于大模型來(lái)說(shuō),“知識(shí)密度”是一個(gè)非常關(guān)鍵的指標(biāo),就像集成電路領(lǐng)域的“先進(jìn)制程”一樣,如果說(shuō)高制程芯片能夠在同樣面積上集成更多的晶體管,那么“知識(shí)密度高”的大模型,能夠在同樣的參數(shù)空間內(nèi)學(xué)習(xí)并存儲(chǔ)更多的知識(shí),從而更好地完成特定領(lǐng)域的任務(wù)。

半導(dǎo)體領(lǐng)域的“先進(jìn)制程”封鎖,一直是拿捏中國(guó)芯片的有效手段。

那么,頭部知識(shí)平臺(tái)對(duì)大模型采取“關(guān)門政策”,會(huì)影響到大模型及AI產(chǎn)品的先進(jìn)性嗎?

我們的觀點(diǎn)如標(biāo)題所示,大模型是不會(huì)被“知識(shí)圍城”而封鎖的。

比起結(jié)論,更值得進(jìn)一步探討的是,既然大模型訓(xùn)練對(duì)平臺(tái)內(nèi)容并沒(méi)有高度依賴,模廠和平臺(tái)的矛盾是從何而起呢?

wKgZombNQrCAMSuzAAIz-cwzV1I704.jpg

很多讀者都聽(tīng)說(shuō)過(guò)AI三要素,是數(shù)據(jù)、算力、算法。知識(shí)處于什么地位呢?憑什么大模型知識(shí)密度,具有半導(dǎo)體“先進(jìn)制程”一樣的重要性呢?

清華大學(xué)張鈸院士說(shuō)過(guò),當(dāng)前大模型存在難以逾越的天花板,“推動(dòng)AI的創(chuàng)新應(yīng)用與產(chǎn)業(yè)化,四個(gè)要素肯定都要發(fā)揮知識(shí)、數(shù)據(jù)、算法、算力,但是我們最主張的,就必須重視知識(shí)的作用,所以我們把知識(shí)放在第一位”。

可能有人又會(huì)問(wèn),院士說(shuō)得就一定對(duì)嗎?當(dāng)然不一定。我們還可以來(lái)看看一線的從業(yè)者,又是怎么想的。

我聽(tīng)過(guò)某AI創(chuàng)業(yè)公司,在交付產(chǎn)品時(shí),發(fā)現(xiàn)即便是基于GPT4-Turbo這樣性能領(lǐng)先的基座模型,AI也對(duì)很多問(wèn)題答不上來(lái)。因?yàn)橛行﹫?chǎng)景會(huì)用到一些隱性知識(shí),這些知識(shí)是下一步推理所必需的,但模型經(jīng)常get不到。

wKgaombNQrCADzJsAACJ8BZXr9s881.jpg

比如生成一道菜譜,其中提到了“加辣椒”,但辣椒有點(diǎn)辣(隱性知識(shí)),就需要詢問(wèn)用戶“喜不喜歡吃辣”,人類廚師早就了解這個(gè)基礎(chǔ)知識(shí),但讓AI主動(dòng)意識(shí)到并詢問(wèn)就很難。

這是因?yàn)槿鄙佟巴ㄗR(shí)知識(shí)”。

某金融券商想用大模型來(lái)替代人類理財(cái)師,發(fā)現(xiàn)大模型給出的理財(cái)觀點(diǎn)和建議很泛泛,是一些常識(shí)性內(nèi)容,而用戶在決策時(shí),需要的是人類專家那樣犀利的洞見(jiàn)。

一位金融從業(yè)者說(shuō),有些場(chǎng)景,大模型fine tuning還不如傳統(tǒng)的小模型,怎么把業(yè)務(wù)知識(shí)注入大模型中,做了各種嘗試也沒(méi)有特別好的方法,只能把飄在上面的問(wèn)題數(shù)據(jù),收集來(lái)達(dá)標(biāo)給LLM,希望它下次不要再犯錯(cuò)網(wǎng)絡(luò)。

而另一個(gè)創(chuàng)業(yè)公司發(fā)現(xiàn),如果從小處著手,將LLM與行業(yè)知識(shí)融合,可以獲得97%以上的準(zhǔn)確率,基本能達(dá)到行業(yè)客戶的驗(yàn)收標(biāo)準(zhǔn)。實(shí)際上,很多AI創(chuàng)業(yè)公司的大模型ToB項(xiàng)目,都是幫助企業(yè)構(gòu)建定制化知識(shí)庫(kù)(KB系統(tǒng))。

領(lǐng)域知識(shí),則是關(guān)乎大模型處理復(fù)雜專項(xiàng)任務(wù)、收獲商業(yè)成功的第二道壁壘。

所以,很多模廠都希望模型通過(guò)持續(xù)學(xué)習(xí),來(lái)不斷吸收新知識(shí),這又帶來(lái)了新的問(wèn)題——修改核心參數(shù),這可能影響到模型的原有性能,有可能直接崩掉,不work了,這是業(yè)務(wù)的大敵。

咋辦呢?還是得靠知識(shí)。

一方面,原本知識(shí)密度就高的大模型,相當(dāng)于人類具備很強(qiáng)的通識(shí)基礎(chǔ),提前了解了很多背景知識(shí),所以泛化能力很強(qiáng),可以在面對(duì)新領(lǐng)域、陌生任務(wù)時(shí),快速學(xué)習(xí)、舉一反三。所以,知識(shí)密度可以讓大模型具備跨領(lǐng)域、自學(xué)習(xí)的能力,通過(guò)“知識(shí)回路”就能學(xué)會(huì)新知識(shí)了。這就減少了人工干預(yù),從而降低了故障率。

另外,高效、精準(zhǔn)的知識(shí)編輯,可以對(duì)大模型中的知識(shí)進(jìn)行新增、擦除等操作,就可以用很小的代價(jià),實(shí)現(xiàn)模型的迭代升級(jí)。讓模廠在保持模型先進(jìn)性的同時(shí),也不影響到現(xiàn)有業(yè)務(wù)的持續(xù)性。對(duì)于業(yè)務(wù)不能中斷的金融、政務(wù)、電力、工廠等行業(yè)客戶,簡(jiǎn)直不要太有吸引力。

此外,一些實(shí)際業(yè)務(wù)中,不希望大模型在生成時(shí)說(shuō)出來(lái)的話,比如一些隱私信息,或者有害有毒內(nèi)容、政治偏見(jiàn)等,都需要知識(shí)編輯技術(shù)來(lái)進(jìn)行“祛毒”,精準(zhǔn)地識(shí)別毒性區(qū)域并擦除有毒內(nèi)容,真正做到給大模型“洗腦”。

由此可見(jiàn),知識(shí)是AI商業(yè)化全流程都必須關(guān)注的。業(yè)界一度有著“得知識(shí)者得天下”的風(fēng)向。有模廠提出了大模型知識(shí)的“摩爾定律”,認(rèn)為大模型的知識(shí)密度,應(yīng)該每隔8個(gè)月就翻一倍,同等知識(shí)量的模型參數(shù)量減半。

那反過(guò)來(lái)想一想,失知識(shí)者豈不是要失天下了?

wKgaombNQrKAK4o5AAHUiaMcQLM672.jpg

知識(shí)平臺(tái),是人類知識(shí)匯聚的重要渠道,OpenAI、谷歌等海外AI公司都與優(yōu)質(zhì)媒體內(nèi)容平臺(tái)有商業(yè)化合作,用授權(quán)內(nèi)容來(lái)訓(xùn)練自家模型。

既然如此,為什么我們會(huì)說(shuō),大模型其實(shí)并不擔(dān)心平臺(tái)的“知識(shí)封鎖”呢?

因?yàn)槿祟愔R(shí)平臺(tái),不再是模型不得不進(jìn)的“圍城”。

如果說(shuō)原始數(shù)據(jù)是“草”,而知識(shí)是牛奶,那么傳統(tǒng)知識(shí)獲取,是讓機(jī)器“喝的是奶,產(chǎn)的也是奶”。就像20世紀(jì)的專家系統(tǒng),根據(jù)一個(gè)或者多個(gè)專家提供的知識(shí)和經(jīng)驗(yàn),通過(guò)模擬專家的思維過(guò)程,讓機(jī)器能夠解決問(wèn)題。

這種情況下,實(shí)現(xiàn)機(jī)器智能就必須依賴由人類領(lǐng)域?qū)<遥约皩<抑R(shí)庫(kù)。要“進(jìn)城”獲取知識(shí),必須給平臺(tái)“城主”交過(guò)路費(fèi)。

但大模型不一樣的地方,一是“不是必須喝奶,吃草也行”,可以直接從原始數(shù)據(jù)中挖掘知識(shí)、抽取知識(shí)。DeepMind聯(lián)合創(chuàng)始人哈薩比斯曾經(jīng)設(shè)想過(guò),未來(lái)的大模型可以直接從與客觀世界的感知交互過(guò)程中,利用深度學(xué)習(xí)算法來(lái)總結(jié)知識(shí),并直接用于決策。

二是“不依賴人產(chǎn)奶,自己也行”,通過(guò)數(shù)據(jù)驅(qū)動(dòng)的大規(guī)模自動(dòng)化的知識(shí)獲取,反哺模型。

ChatGPT、GPT4都具備較強(qiáng)的知識(shí)圖譜建構(gòu)能力,按照要求抽取知識(shí),正確率可以達(dá)到88%,這種“生產(chǎn)效率”可比人類寫論文、在問(wèn)答平臺(tái)“謝邀,剛下飛機(jī),答一下”,要快得多。

更進(jìn)一步,業(yè)界還在研究能夠大規(guī)模編碼和處理各種知識(shí)表示結(jié)構(gòu)的大型知識(shí)模型(Large Knowledge Model)。從LLM到LKM,對(duì)現(xiàn)有人類知識(shí)的依賴越來(lái)越低了。

所以,是否收錄基于人類知識(shí)的平臺(tái)內(nèi)容,其實(shí)對(duì)大模型訓(xùn)練來(lái)說(shuō),影響已經(jīng)很小了。

“吃的是草,吐的是奶”的模型,可以在大數(shù)據(jù)的曠野上生存,并不一定要進(jìn)知識(shí)平臺(tái)這座“圍城”,“關(guān)門”也就關(guān)門吧。

wKgaombNQrOAKqmXAAB0ZlM_MNM451.jpg

所以我們看到的后續(xù)就是,秘塔AI搜索在收到知網(wǎng)的函件之后,表示“學(xué)術(shù)”版塊僅收錄了論文的文獻(xiàn)摘要和題錄,并未收錄文章內(nèi)容本身。而且還主動(dòng)“斷鏈”,不再收錄知網(wǎng)文獻(xiàn)的題錄及摘要數(shù)據(jù),轉(zhuǎn)而收錄其他中英文權(quán)威知識(shí)庫(kù)的文獻(xiàn)題錄及摘要數(shù)據(jù)。類似的,被知乎以亂碼干擾的谷歌搜索、微軟必應(yīng)搜索,模型能力依然領(lǐng)先。

wKgZombNQrSAHvUOAAJM_NBM_4A531.jpg

那么,知識(shí)平臺(tái)的反應(yīng),難道是過(guò)度反應(yīng)、虛空索敵嗎?平臺(tái)究竟想“鎖”住什么,恐怕才是值得關(guān)注的真問(wèn)題。

首先,沒(méi)必要利用人類知識(shí)來(lái)訓(xùn)練模型,并不是說(shuō)大模型廠商就一定不會(huì)侵權(quán)。

目前,全球模廠都面臨高質(zhì)量語(yǔ)料匱乏的隱憂,數(shù)據(jù)焦渴之下,在未授權(quán)的情況下,用到有知識(shí)產(chǎn)權(quán)的數(shù)據(jù)是可能發(fā)生的。

在某次采訪中,OpenAI的CTO就對(duì)“視頻訓(xùn)練數(shù)據(jù)是否來(lái)自YouTube等公開(kāi)網(wǎng)站”等問(wèn)題避而不談。此前,《紐約時(shí)報(bào)》曾因商談“內(nèi)容付費(fèi)”沒(méi)有成效,將OpenAI和微軟告上法庭,指控他們未經(jīng)授權(quán)就使用該機(jī)構(gòu)的數(shù)百萬(wàn)篇文章來(lái)訓(xùn)練AI模型。

而前不久,微軟就與學(xué)術(shù)出版商Taylor & Francis簽署了一項(xiàng)價(jià)值1000萬(wàn)美元的協(xié)議,允許微軟訪問(wèn)其數(shù)據(jù)來(lái)改進(jìn)AI系統(tǒng)。

由此可見(jiàn),雖然AI領(lǐng)域的知識(shí)產(chǎn)權(quán)問(wèn)題仍然有很多盲區(qū),但與知識(shí)平臺(tái)達(dá)成版權(quán)合作,應(yīng)該被模廠及其客戶,納入AI合規(guī)和持續(xù)性經(jīng)營(yíng)的考量中。

此外,即使侵權(quán)問(wèn)題并不存在,但價(jià)值沖擊也會(huì)發(fā)生。

具體來(lái)說(shuō),AI搜索等新一代AI產(chǎn)品,對(duì)知識(shí)平臺(tái)的沖擊有兩方面:

一是流量?jī)r(jià)值沖擊。盡管秘塔AI搜索聲明中提到,向用戶提供的是知網(wǎng)的學(xué)術(shù)文獻(xiàn)題錄及摘要數(shù)據(jù),用戶要進(jìn)一步瀏覽正文,要通過(guò)來(lái)源鏈接跳轉(zhuǎn)至網(wǎng)站獲取。但搜索引擎將觸角伸到網(wǎng)站,用戶就會(huì)減少訪問(wèn)與站內(nèi)搜索,從而影響平臺(tái)的流量和潛在收益,類似于微信此前阻止百度搜索到公眾號(hào)內(nèi)容一樣。

二是知識(shí)價(jià)值沖擊。基于大模型的AI搜索具備總結(jié)、生成等能力,而由于模型可能存在“過(guò)擬合”問(wèn)題,也就是AI自己“腦補(bǔ)”,最終可能輸出給用戶的內(nèi)容與原文高度一致,沒(méi)直接侵權(quán)但勝似侵權(quán)。

此前就有很多小說(shuō)作者發(fā)現(xiàn),模型生成的故事大綱與走向與自己寫的高度類似,懷疑云文檔被用來(lái)訓(xùn)練AI模型,但極有可能是AI跟人類作者“撞腦”了。

大模型經(jīng)濟(jì)的核心價(jià)值,是知識(shí)的創(chuàng)造與分發(fā)。

一位朋友說(shuō),“以前有問(wèn)題,我會(huì)上網(wǎng)問(wèn)知乎,但有些問(wèn)題我不想讓公眾知道,以后我就問(wèn)基礎(chǔ)大模型+領(lǐng)域知識(shí)+AI Agent打造的專業(yè)bot,一次到位”。Perplexity CEO曾明確說(shuō)過(guò),“我們想成為世界上最以知識(shí)為中心的公司”,秘塔AI搜索經(jīng)常被比作中國(guó)的Perplexity。

可以看到,即使沒(méi)有侵權(quán)糾紛,AI企業(yè)及產(chǎn)品,也與知識(shí)平臺(tái),在商業(yè)層面形成了直接的替代和競(jìng)爭(zhēng)關(guān)系。

失知識(shí)者失天下,從這個(gè)角度來(lái)說(shuō),的確成立。

大模型在數(shù)據(jù)曠野上狂飆突進(jìn),知識(shí)平臺(tái)能否靠“關(guān)門上鎖”來(lái)守住核心價(jià)值呢?或許大家心中已經(jīng)有答案。

解鎖關(guān)鍵信息

知識(shí)平臺(tái)封鎖,鎖不住AI獲取知識(shí)的腳步

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    33554

    瀏覽量

    274196
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    2941

    瀏覽量

    3683
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    AD8313沒(méi)有模型,仿真不了怎么解決?

    AD8313沒(méi)有模型,在multisim上仿真不了,請(qǐng)?zhí)峁┲г?或者提供一個(gè)更新的版本也可以。
    發(fā)表于 03-24 06:38

    Tina里沒(méi)有LDC1000的模型嗎?

    Tina里沒(méi)有LDC1000的模型嗎??
    發(fā)表于 12-25 08:25

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.52】基于大模型的RAG應(yīng)用開(kāi)發(fā)與優(yōu)化

    推理用到某些特定場(chǎng)景,就會(huì)產(chǎn)生不準(zhǔn)確的輸出。 (3)理解存在局限性:死記硬背,加上問(wèn)題太難了。 大模型沒(méi)有真正“理解”訓(xùn)練知識(shí)的深層含義,也不具備人類普遍的常識(shí)與經(jīng)驗(yàn),因此可能會(huì)在一些需要深入
    發(fā)表于 12-04 10:50

    【實(shí)操文檔】在智能硬件的大模型語(yǔ)音交互流程中接入RAG知識(shí)庫(kù)

    本帖最后由 jf_40317719 于 2024-9-29 17:13 編輯 智能硬件的語(yǔ)音交互接入大模型后可以直接理解自然語(yǔ)言內(nèi)容,但大模型作為一個(gè)語(yǔ)言模型,對(duì)專業(yè)領(lǐng)域知識(shí)
    發(fā)表于 09-29 17:12

    知識(shí)分享 | 輕松實(shí)現(xiàn)優(yōu)質(zhì)建模

    知識(shí)分享在知識(shí)分享欄目中,我們會(huì)定期與讀者分享來(lái)自MES模賽思的基于模型的軟件開(kāi)發(fā)相關(guān)Know-How干貨,關(guān)注公眾號(hào),隨時(shí)掌握基于模型的軟件設(shè)計(jì)的技術(shù)
    的頭像 發(fā)表于 09-12 08:08 ?585次閱讀
    <b class='flag-5'>知識(shí)</b>分享 | 輕松實(shí)現(xiàn)優(yōu)質(zhì)建模

    想要了解下大模型知識(shí)

    工作需要,想要了解一下大模型算力建設(shè)知識(shí)
    發(fā)表于 08-20 15:31

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    今天來(lái)學(xué)習(xí)大語(yǔ)言模型在自然語(yǔ)言理解方面的原理以及問(wèn)答回復(fù)實(shí)現(xiàn)。 主要是基于深度學(xué)習(xí)和自然語(yǔ)言處理技術(shù)。 大語(yǔ)言模型涉及以下幾個(gè)過(guò)程: 數(shù)據(jù)收集:大語(yǔ)言模型通過(guò)從互聯(lián)網(wǎng)、書(shū)籍、新聞、社交媒體等多種渠道
    發(fā)表于 08-02 11:03

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    的章節(jié)包括統(tǒng)一自然語(yǔ)言任務(wù)、大語(yǔ)言模型的訓(xùn)練過(guò)程和局限性分析,閱讀還算順利。 至此,基礎(chǔ)篇只能算是瀏覽完成,因?yàn)椴糠衷矸椒ú?b class='flag-5'>沒(méi)有吃透,但盡管如此也是收獲頗豐,因?yàn)槲伊私饬舜笳Z(yǔ)言模型的基礎(chǔ)知識(shí)
    發(fā)表于 07-25 14:33

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 俯瞰全書(shū)

    ,了解此書(shū)的主要內(nèi)容: 書(shū)分四篇,基礎(chǔ)、入門、進(jìn)階和展望。 基礎(chǔ)篇從人工智能起源開(kāi)始、之后又介紹了機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)和大語(yǔ)言模型的基礎(chǔ)知識(shí),如果讀者學(xué)習(xí)過(guò)機(jī)器學(xué)習(xí)相關(guān)課程,那這個(gè)基礎(chǔ)篇的閱讀就會(huì)很輕
    發(fā)表于 07-21 13:35

    知識(shí)圖譜與大模型之間的關(guān)系

    在人工智能的廣闊領(lǐng)域中,知識(shí)圖譜與大模型是兩個(gè)至關(guān)重要的概念,它們各自擁有獨(dú)特的優(yōu)勢(shì)和應(yīng)用場(chǎng)景,同時(shí)又相互補(bǔ)充,共同推動(dòng)著人工智能技術(shù)的發(fā)展。本文將從定義、特點(diǎn)、應(yīng)用及相互關(guān)系等方面深入探討知識(shí)圖譜與大
    的頭像 發(fā)表于 07-10 11:39 ?1733次閱讀

    Al大模型機(jī)器人

    理解能力強(qiáng)大: AI大模型機(jī)器人可以理解和生成自然語(yǔ)言,能夠進(jìn)行復(fù)雜的對(duì)話和語(yǔ)言任務(wù)。它們能夠識(shí)別語(yǔ)言中的語(yǔ)義、語(yǔ)境和情感,并據(jù)此作出適當(dāng)?shù)幕貞?yīng)。廣泛的知識(shí)儲(chǔ)備: 這些模型基于大規(guī)模的數(shù)據(jù)集進(jìn)行訓(xùn)練,擁有
    發(fā)表于 07-05 08:52

    同濟(jì)大學(xué)發(fā)布首個(gè)“知識(shí)模型”CivilGPT,深化教育教學(xué)數(shù)字化轉(zhuǎn)型

    該大模型由同濟(jì)大學(xué)獨(dú)立研發(fā),通過(guò)構(gòu)建高質(zhì)量的語(yǔ)料庫(kù)并利用千億級(jí)別的基礎(chǔ)模型進(jìn)行訓(xùn)練,成功打造了首個(gè)具備土木工程專業(yè)知識(shí)的垂直領(lǐng)域大模型,為工程教育和科研提供了全新的視角和工具。
    的頭像 發(fā)表于 05-28 09:46 ?2892次閱讀

    這個(gè)是不是表示沒(méi)有仿真模型

    先上圖 這個(gè)是不是表示沒(méi)有仿真模型啊? 哪個(gè)版本有ds12c887的仿真模型???謝謝!
    發(fā)表于 05-12 22:17

    阿里達(dá)摩院提出“知識(shí)鏈”框架,降低大模型幻覺(jué)

    近日,阿里巴巴達(dá)摩院(湖畔實(shí)驗(yàn)室)攜手新加坡南洋理工大學(xué)等研究機(jī)構(gòu),共同推出了大模型知識(shí)鏈(CoK)框架。該框架不僅可實(shí)時(shí)檢索異構(gòu)知識(shí)源,還能逐步糾正推理錯(cuò)誤,有效提高了大模型在回答
    的頭像 發(fā)表于 05-10 11:46 ?866次閱讀

    【大語(yǔ)言模型:原理與工程實(shí)踐】大語(yǔ)言模型的應(yīng)用

    和微調(diào)的積累,無(wú)需額外知識(shí)。然而,大模型所掌握的世界知識(shí)具有時(shí)效性,對(duì)于訓(xùn)練后發(fā)生的事件或訓(xùn)練集中未涵蓋的知識(shí),大語(yǔ)言模型往往無(wú)法應(yīng)對(duì)。當(dāng)面
    發(fā)表于 05-07 17:21