一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自動(dòng)駕駛技術(shù)的神經(jīng)網(wǎng)絡(luò)解決方案

電子設(shè)計(jì) ? 來(lái)源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2017-12-19 10:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

高級(jí)輔助駕駛系統(tǒng) (ADAS) 可提供解決方案,用以滿足駕乘人員對(duì)道路安全及出行體驗(yàn)的更高要求。諸如車道偏離警告、自動(dòng)剎車及泊車輔助等系統(tǒng)廣泛應(yīng)用于當(dāng)前的車型,甚至是功能更為強(qiáng)大的車道保持、塞車輔助及自適應(yīng)巡航控制等系統(tǒng)的配套使用也讓未來(lái)的全自動(dòng)駕駛車輛成為現(xiàn)實(shí)。

如今,車輛的很多系統(tǒng)使用的都是機(jī)器視覺(jué)。機(jī)器視覺(jué)采用傳統(tǒng)信號(hào)處理技術(shù)來(lái)檢測(cè)識(shí)別物體。

對(duì)于正熱衷于進(jìn)一步提高拓展 ADAS 功能的汽車制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度學(xué)習(xí)技術(shù)無(wú)疑為其指明了道路。

知名品牌為首的汽車制造業(yè)正在深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)上進(jìn)行投資,并向先進(jìn)的計(jì)算企業(yè)、硅谷等技術(shù)引擎及學(xué)術(shù)界看齊。在中國(guó),百度一直在此技術(shù)上保持領(lǐng)先。百度計(jì)劃在 2019 年將全自動(dòng)汽車投入商用,并加大全自動(dòng)汽車的批量生產(chǎn)力度,使其在 2021 年可廣泛投入使用。汽車制造業(yè)及技術(shù)領(lǐng)軍者之間的密切合作是嵌入式系統(tǒng)神經(jīng)網(wǎng)絡(luò)發(fā)展的催化劑。這類神經(jīng)網(wǎng)絡(luò)需要滿足汽車應(yīng)用環(huán)境對(duì)系統(tǒng)大小、成本及功耗的要求。

輕型嵌入式神經(jīng)網(wǎng)絡(luò)

卷積式神經(jīng)網(wǎng)絡(luò) (CNN) 的應(yīng)用可分為三個(gè)階段:訓(xùn)練、轉(zhuǎn)化及 CNN 在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得一個(gè)高性價(jià)比、針對(duì)大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段使用最為有利的系統(tǒng)。

訓(xùn)練往往在線下通過(guò)基于 CPU 的系統(tǒng)、圖形處理器 (GPU) 或現(xiàn)場(chǎng)可編程門陣列 (FPGA) 來(lái)完成。由于計(jì)算功能強(qiáng)大且設(shè)計(jì)人員對(duì)其很熟悉,這些是用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的最為理想的系統(tǒng)。

在訓(xùn)練階段,開(kāi)發(fā)商利用諸如 Caffe 等的框架對(duì) CNN 進(jìn)行訓(xùn)練及優(yōu)化。參考圖像數(shù)據(jù)庫(kù)用于確定網(wǎng)絡(luò)中神經(jīng)元的最佳權(quán)重參數(shù)。訓(xùn)練結(jié)束即可采用傳統(tǒng)方法在 CPU、GPU 或 FPGA 上生成網(wǎng)絡(luò)及原型,尤其是執(zhí)行浮點(diǎn)運(yùn)算以確保最高的精確度。

作為一種車載使用解決方案,這種方法有一些明顯的缺點(diǎn)。運(yùn)算效率低及成本高使其無(wú)法在大批量量產(chǎn)系統(tǒng)中使用。

CEVA 已經(jīng)推出了另一種解決方案。這種解決方案可降低浮點(diǎn)運(yùn)算的工作負(fù)荷,并在汽車應(yīng)用可接受的功耗水平上獲得實(shí)時(shí)的處理性能表現(xiàn)。隨著全自動(dòng)駕駛所需的計(jì)算技術(shù)的進(jìn)一步發(fā)展,對(duì)關(guān)鍵功能進(jìn)行加速的策略才能保證這些系統(tǒng)得到廣泛應(yīng)用。

利用被稱為 CDNN 的框架對(duì)網(wǎng)絡(luò)生成策略進(jìn)行改進(jìn)。經(jīng)過(guò)改進(jìn)的策略采用在高功耗浮點(diǎn)計(jì)算平臺(tái)上(利用諸如 Caffe 的傳統(tǒng)網(wǎng)絡(luò)生成器)開(kāi)發(fā)的受訓(xùn)網(wǎng)絡(luò)結(jié)構(gòu)和權(quán)重,并將其轉(zhuǎn)化為基于定點(diǎn)運(yùn)算,結(jié)構(gòu)緊湊的輕型的定制網(wǎng)絡(luò)模型。接下來(lái),此模型會(huì)在一個(gè)基于專門優(yōu)化的成像和視覺(jué) DSP 芯片的低功耗嵌入式平臺(tái)上運(yùn)行。圖 1 顯示了輕型嵌入式神經(jīng)網(wǎng)絡(luò)的生成過(guò)程。與原始網(wǎng)絡(luò)相比,這種技術(shù)可在當(dāng)今量產(chǎn)型車輛的有限功率預(yù)算下帶來(lái)高性能的神經(jīng)處理表現(xiàn),而圖像識(shí)別精確度降低不到 1%。

圖 1. CDNN 將通過(guò)傳統(tǒng)方法生成的網(wǎng)絡(luò)權(quán)重轉(zhuǎn)化為一個(gè)定點(diǎn)網(wǎng)絡(luò)

一個(gè)由低功耗嵌入式平臺(tái)托管的輸入大小為 224x224、卷積過(guò)濾器分別為 11x11、5x5 及 3x3 的 24 層卷積神經(jīng)網(wǎng)絡(luò), 其性能表現(xiàn)幾乎是一個(gè)在典型的 GPU/CPU 綜合處理引擎上運(yùn)行的類似 CNN 的三倍,盡管其所需的內(nèi)存帶寬只是后者的五分之一且功耗大幅降低。

下一代深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

汽車制造業(yè)進(jìn)入神經(jīng)網(wǎng)絡(luò)領(lǐng)域所習(xí)得的經(jīng)驗(yàn)不斷推動(dòng)技術(shù)的發(fā)展,并因此開(kāi)發(fā)出了更先進(jìn)的網(wǎng)絡(luò)架構(gòu)及更復(fù)雜的拓?fù)洌缑考?jí)多層拓?fù)?、多?多出及全卷積網(wǎng)絡(luò)。新推出的重要網(wǎng)絡(luò)類型不僅可用來(lái)識(shí)別物體,也可用來(lái)識(shí)別場(chǎng)景,從而提供用以解決汽車領(lǐng)域應(yīng)用程序(如自動(dòng)駕駛功能)所需的圖像分割。

當(dāng)然,中國(guó) 40 家左右的汽車制造商并不會(huì)在此道路上踽踽獨(dú)行。他們會(huì)與百度等技術(shù)公司進(jìn)行密切合作。技術(shù)公司是這些網(wǎng)絡(luò)和架構(gòu)發(fā)展的核心。CNN 網(wǎng)絡(luò)生成器功能的完善也為新的網(wǎng)絡(luò)架構(gòu)和拓?fù)涮峁┝酥С?,?SegNet 及 GoogLeNet 與 ResNet 等其它網(wǎng)絡(luò)結(jié)構(gòu)以及高級(jí)網(wǎng)絡(luò)層(圖 2)。此外,一鍵啟用也讓預(yù)訓(xùn)網(wǎng)絡(luò)轉(zhuǎn)換成優(yōu)化的實(shí)時(shí)網(wǎng)絡(luò)執(zhí)行更為便捷。為確保給常用的網(wǎng)絡(luò)生成器提供支持,CDNN 框架與 Caffe 和 TensorFlow (谷歌的機(jī)器學(xué)習(xí)軟件庫(kù))都有合作。

1512642959888935.jpg

圖 2網(wǎng)絡(luò)生成器的發(fā)展為新網(wǎng)絡(luò)層及更深的架構(gòu)提供了支持

由于最新推出的嵌入式處理平臺(tái)在可擴(kuò)展性及靈活性上都有了很大改進(jìn),因此嵌入式部署也可以利用這些改進(jìn)來(lái)完善自身。由于深度學(xué)習(xí)領(lǐng)域的發(fā)展越來(lái)越多樣化,因此擁有一個(gè)不僅能滿足當(dāng)今處理需求,也具有適應(yīng)未來(lái)的技術(shù)創(chuàng)新的靈活架構(gòu)非常重要。

鋪好路

第一批神經(jīng)網(wǎng)絡(luò)應(yīng)用程序?qū)W⒂谝曈X(jué)處理,以支持諸如自動(dòng)行人、交通信號(hào)或道路特征識(shí)別等功能。由于這些系統(tǒng)的性能不斷改進(jìn),例如處理越來(lái)越大的來(lái)自高分辨率相機(jī)的數(shù)據(jù)集,因此神經(jīng)網(wǎng)絡(luò)也有望在未來(lái)的汽車中發(fā)揮更大的作用。這些作用將包括承擔(dān)系統(tǒng)中其它復(fù)雜的信號(hào)處理任務(wù),例如雷達(dá)模塊及語(yǔ)音識(shí)別系統(tǒng)。

隨著神經(jīng)網(wǎng)絡(luò)首次應(yīng)用于車載自動(dòng)駕駛系統(tǒng),(據(jù)報(bào)道,某些國(guó)家將在 2019-2020 年型的新車輛中使用神經(jīng)網(wǎng)絡(luò),)對(duì)同時(shí)兼具安全性及可靠性的系統(tǒng)的需求會(huì)越來(lái)越大。中國(guó)政府計(jì)劃在 2021 至 2025 年推出自動(dòng)駕駛車輛。要讓此類系統(tǒng)具備可讓客戶使用的條件,汽車制造商必須同時(shí)確保其符合相關(guān)的安全標(biāo)準(zhǔn),如 ISO 26262 功能安全性。這需要硬件、軟件及系統(tǒng)的綜合發(fā)展。

由于這些系統(tǒng)變得越來(lái)越復(fù)雜,因此確保系統(tǒng)可靠安全且能滿足處理需求也成為汽車制造商所面臨的越來(lái)越大的挑戰(zhàn)。

結(jié)論

機(jī)器學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)將沿著一條挑戰(zhàn)高效處理性能的發(fā)展道路繼續(xù)闊步前進(jìn)。先進(jìn)的神經(jīng)網(wǎng)絡(luò)架構(gòu)已經(jīng)顯現(xiàn)出優(yōu)于人類的識(shí)別精確性。用于生成網(wǎng)絡(luò)的最新框架,如 CDNN2,正在推動(dòng)輕型、低功耗嵌入式神經(jīng)網(wǎng)絡(luò)的發(fā)展。這種神經(jīng)網(wǎng)絡(luò)將使目前的高級(jí)輔助駕駛系統(tǒng)具有較高的精確性及實(shí)時(shí)處理能力。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1645

    文章

    22046

    瀏覽量

    618272
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    11077

    瀏覽量

    217022
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    789

    文章

    14316

    瀏覽量

    170594
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    354

    瀏覽量

    22741
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    和語(yǔ)音識(shí)別等領(lǐng)域取得了顯著成就,并廣泛用于車輛自動(dòng)駕駛的圖像目標(biāo)識(shí)別中。 1.局部連接:CNN通過(guò)局部連接的方式減少了網(wǎng)絡(luò)自由參數(shù)的個(gè)數(shù),從而降低了計(jì)算復(fù)雜度,并使網(wǎng)絡(luò)更易于訓(xùn)練。與全連接網(wǎng)絡(luò)
    的頭像 發(fā)表于 04-07 09:15 ?360次閱讀
    <b class='flag-5'>自動(dòng)駕駛</b>感知系統(tǒng)中卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?661次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?914次閱讀

    沃爾沃與Waabi攜手開(kāi)發(fā)自動(dòng)駕駛卡車

    沃爾沃自動(dòng)駕駛解決方案公司(V.A.S.)近日宣布與加拿大自動(dòng)駕駛卡車技術(shù)公司W(wǎng)aabi建立合作伙伴關(guān)系,共同致力于自動(dòng)駕駛卡車
    的頭像 發(fā)表于 02-10 17:33 ?555次閱讀

    2024年自動(dòng)駕駛行業(yè)熱點(diǎn)技術(shù)盤點(diǎn)

    自動(dòng)駕駛技術(shù)日新月異,每一年都會(huì)有新的突破。2024年的自動(dòng)駕駛,更是出現(xiàn)了許多新的技術(shù)路線,其中包括城市NOA(Navigate on Autopilot)、Robotaxi、端到端
    的頭像 發(fā)表于 01-14 10:48 ?613次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1183次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    端到端自動(dòng)駕駛技術(shù)研究與分析

    傳遞和全局優(yōu)化的優(yōu)勢(shì),成為智能駕駛技術(shù)發(fā)展的重要方向。與傳統(tǒng)模塊化架構(gòu)相比,端到端技術(shù)通過(guò)深度神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)從傳感器數(shù)據(jù)輸入到車輛控制信號(hào)輸出的完整優(yōu)化路徑,大大提升了系統(tǒng)的可靠性和效率
    的頭像 發(fā)表于 12-19 13:07 ?887次閱讀

    馬斯克重申:純視覺(jué)是自動(dòng)駕駛的未來(lái)

    近日,特斯拉始終堅(jiān)持其獨(dú)特的純視覺(jué)感知系統(tǒng)。這一系統(tǒng)摒棄了傳統(tǒng)的毫米波雷達(dá),完全依賴于攝像頭與先進(jìn)的人工神經(jīng)網(wǎng)絡(luò),以實(shí)現(xiàn)自動(dòng)駕駛的功能。 特斯拉CEO埃隆·馬斯克近期再次就自動(dòng)駕駛技術(shù)
    的頭像 發(fā)表于 12-04 14:09 ?838次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1865次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    Mobileye端到端自動(dòng)駕駛解決方案的深度解析

    自動(dòng)駕駛技術(shù)正處于快速發(fā)展之中,各大科技公司和汽車制造商均在爭(zhēng)相布局,試圖在這個(gè)新興領(lǐng)域占據(jù)一席之地。Mobileye作為全球自動(dòng)駕駛技術(shù)的領(lǐng)軍企業(yè)之一,憑借其獨(dú)特的端到端
    的頭像 發(fā)表于 10-17 09:35 ?833次閱讀
    Mobileye端到端<b class='flag-5'>自動(dòng)駕駛</b><b class='flag-5'>解決方案</b>的深度解析

    實(shí)現(xiàn)自動(dòng)駕駛,唯有端到端?

    ,去年行業(yè)主流方案還是輕高精地圖城區(qū)智駕,今年大家的目標(biāo)都瞄到了端到端(End-to-End, E2E)。端到端作為一種新興的技術(shù)路徑,逐漸受到業(yè)內(nèi)的廣泛關(guān)注。端到端解決方案自動(dòng)駕駛
    的頭像 發(fā)表于 08-12 09:14 ?1518次閱讀
    實(shí)現(xiàn)<b class='flag-5'>自動(dòng)駕駛</b>,唯有端到端?

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些優(yōu)勢(shì)?

    FPGA(Field-Programmable Gate Array,現(xiàn)場(chǎng)可編程門陣列)在自動(dòng)駕駛領(lǐng)域具有顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)使得FPGA成為自動(dòng)駕駛技術(shù)中不可或缺的一部分。以下是FPGA在
    發(fā)表于 07-29 17:11

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些應(yīng)用?

    控制。在視覺(jué)算法方面,F(xiàn)PGA利用自身并行處理和高速存儲(chǔ)器的特點(diǎn),極大地加快了算法的執(zhí)行速度,提高了運(yùn)算效率。 五、未來(lái)發(fā)展趨勢(shì)隨著自動(dòng)駕駛技術(shù)的不斷發(fā)展,F(xiàn)PGA在自動(dòng)駕駛領(lǐng)域的應(yīng)用將會(huì)更加廣泛
    發(fā)表于 07-29 17:09

    自動(dòng)駕駛的傳感器技術(shù)介紹

    自動(dòng)駕駛的傳感器技術(shù)自動(dòng)駕駛系統(tǒng)的核心組成部分,它使車輛能夠感知并理解周圍環(huán)境,從而做出智能決策。以下是對(duì)自動(dòng)駕駛傳感器技術(shù)的詳細(xì)介紹,內(nèi)
    的頭像 發(fā)表于 07-23 16:08 ?3225次閱讀