一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能在傳感器技術(shù)的應(yīng)用方案探討

電子設(shè)計 ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2017-12-21 09:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能AI)目前正在為社會的方方面面帶來革新。比如,通過結(jié)合數(shù)據(jù)挖掘和深度學習的優(yōu)勢,如今可以利用人工智能來分析各種來源的大量數(shù)據(jù),識別各種模式、提供交互式理解和進行智能預(yù)測。

這種創(chuàng)新發(fā)展的一個例子就是將人工智能應(yīng)用于由傳感器生成的數(shù)據(jù),尤其是通過智能手機和其他消費者設(shè)備所收集的數(shù)據(jù)。運動傳感器數(shù)據(jù)以及其他信息比如GPS地址,可提供大量不同的數(shù)據(jù)集。因此,問題在于:“如何使用人工智能才能充分發(fā)揮這些協(xié)同作用?”

運動數(shù)據(jù)分析

一個說明性的的真實應(yīng)用程序?qū)⒖梢酝ㄟ^分析使用數(shù)據(jù)來確定用戶在每個時間段的活動,無論是在坐姿、走路、跑步或者睡眠情況下。

在這種情況下,智能產(chǎn)品的好處不言而喻:

1.提高客戶生命周期價值
提高用戶參與度可以降低客戶流失率。

2.更具競爭力的產(chǎn)品定位
下一代智能產(chǎn)品滿足消費者日益增長的期待。

3.為終端用戶創(chuàng)造真正的價值
對室內(nèi)運動的準確檢測和分析可實現(xiàn)靈敏的導航功能、進行健康風險監(jiān)控,同時提高設(shè)備的效率。對多種智能手機和可穿戴平臺實際使用情景的深度掌握,將大大有助于產(chǎn)品設(shè)計師了解用戶的重復習慣和行為,例如確定正確的電池尺寸或確定推送通知的正確時機。

智能手機制造商對于人工智能功能的興趣正濃,這也正突出了識別簡單日?;顒?,如步數(shù)的重要性,這必將發(fā)展為更為深入的分析,例如體育活動。對于像足球這樣的流行體育運動,產(chǎn)品設(shè)計師不會只著眼于運動員,而是會為更多的人提供便利,比如教練、球迷甚至是廣播公司和運動服裝設(shè)計公司等大型公司。這些公司將從深層次的數(shù)據(jù)分析中獲益,從而可以準確量化、提高和預(yù)測運動表現(xiàn)。

數(shù)據(jù)獲取和預(yù)處理

在識別這一商機之后,下一個合理的步驟就是思考如何有效收集這些巨大的數(shù)據(jù)集。

比如在活動跟蹤方面,原始數(shù)據(jù)通過軸向運動傳感器得以收集,例如智能手機、可穿戴設(shè)備和其他便攜式設(shè)備中的加速度計和陀螺儀。這些設(shè)備以完全隱蔽的方式獲取三個坐標軸(x、y、z)上的運動數(shù)據(jù),即以便于用戶應(yīng)用的方式連續(xù)跟蹤和評估活動。

訓練模型

對于人工智能的監(jiān)督式學習,需要用標記數(shù)據(jù)來訓練“模型”,以便分類引擎可以使用此模型對實際用戶行為進行分類。舉例來說,我們從正在進行跑步或是走路的測試用戶那里收集運動數(shù)據(jù),并把這些信息提供給模型來幫助其學習。

由于這基本上是一種一次性方法,簡單的應(yīng)用程序和照相系統(tǒng)就可以完成給用戶“貼標簽”的任務(wù)。我們的經(jīng)驗表明,隨著樣本數(shù)量的增加,在分類上的人為錯誤率隨之減少。因此,從有限數(shù)量的用戶那里獲取更多的樣本集比從大量用戶那里獲得較小的樣本集更有意義。

只獲取原始傳感器數(shù)據(jù)是不夠的。我們觀察到,要實現(xiàn)高度準確的分類,需要仔細確定一些特征,即系統(tǒng)需要被告知對于區(qū)分各個序列重要的特征或者活動。人工學習的過程具有反復性,在預(yù)處理階段,哪些特征最為重要還尚未明確。因此,設(shè)備必須要依據(jù)可能對分類準確性有影響的專業(yè)知識進行一些猜測。

為了進行活動識別,指示性特征可以包括“濾波信號”,例如身體加速(來自傳感器的原始加速度數(shù)據(jù))或“導出信號”,例如高速傅里葉變換(FFT)值或標準差計算。

舉例來說,加州大學歐文分校的機器學習數(shù)據(jù)庫(UCI)創(chuàng)建了一個定義了561個特征的數(shù)據(jù)集,這個數(shù)據(jù)集以30名志愿者的六項基本活動,即站立、坐姿、臥姿、行走、下臺階和上臺階為基礎(chǔ)。

模式識別和分類

收集了原始運動數(shù)據(jù)之后,我們需要應(yīng)用機器學習技術(shù)來將其分類并進行分析??晒┪覀兪褂玫臋C器學習技術(shù)從邏輯回歸到神經(jīng)網(wǎng)絡(luò)等不一而足。

支持向量機(SVMs)就是這樣一個應(yīng)用于人工智能的學習模型。身體活動,比如走路包括了由多種運動構(gòu)成的序列,由于支持向量機擅長于序列分類,因此它是進行活動分類的合理選擇。

支持向量機的使用、培訓、擴展和預(yù)測均十分簡單,所以可以輕松地并列設(shè)置多個樣本采集實驗,以用于處理復雜的現(xiàn)實生活數(shù)據(jù)集的非線性分類。支持向量機還可實現(xiàn)多種不同的尺寸和性能優(yōu)化。

確定一項技術(shù)后,我們必須為支持向量機選擇一個軟件圖書館。開源庫LibSVM是一個很好的選擇,它非常穩(wěn)定并且有詳細的記錄,支持多類分類,并提供所有主要開發(fā)者平臺從MATLABAndroid的拓展。

持續(xù)分類的挑戰(zhàn)

在實踐中,用戶在移動的同時,使用中的設(shè)備要進行實時分類來進行活動識別。為了將產(chǎn)品成本降到最低,我們需要在不影響結(jié)果也就是信息質(zhì)量的前提下,平衡傳輸、存儲和處理的成本。

假設(shè)我們可以負擔數(shù)據(jù)傳輸?shù)馁M用,所有數(shù)據(jù)都可以在云端上獲得存儲和處理。實際上,這會為用戶帶來巨大的數(shù)據(jù)費用,用戶的設(shè)備當然要連接互聯(lián)網(wǎng),無線網(wǎng)絡(luò)、藍牙4G模塊的費用不可避免地將進一步提升設(shè)備成本。

更糟糕的是,在非城市地區(qū),3G網(wǎng)絡(luò)的訪問效果通常不理想,例如徒步旅行、騎自行車或游泳時。這種對云端的大量數(shù)據(jù)傳輸?shù)囊蕾嚂垢伦兟⑶倚枰ㄆ谕?,從而大大抵消人工智能運動分析帶來的實際益處。與之相反,僅在設(shè)備的主處理器上處理這些操作會明顯導致耗電量的增加,并且減少其他應(yīng)用的執(zhí)行周期。同理,將所有數(shù)據(jù)都儲存在設(shè)備上會增加存儲成本。

化圓為方

為了解決這些彼此沖突的問題,我們可以遵循四個原則:

1.拆分——將特征處理從分類引擎的執(zhí)行中拆分。

2.減少——智能選擇準確的活動識別所需的特征,來減少存儲和處理的需求量。

3.使用——使用的傳感器須能夠以較低耗電量獲取數(shù)據(jù)、實施傳感器融合(將多個傳感器的數(shù)據(jù)結(jié)合在一起),并且能夠為持續(xù)執(zhí)行進行特征預(yù)處理。

4.保留——保留能夠確定用戶活動的系統(tǒng)支持性數(shù)據(jù)的模型。

通過將特征處理與分類引擎的執(zhí)行拆分,與加速度和陀螺儀傳感器連接的處理器可以小得多。這有效避免了將實時數(shù)據(jù)塊連續(xù)傳輸?shù)礁鼜姶蟮奶幚砥鞯男枨蟆VT如用于將時間域信號變換為頻率域信號的高速傅里葉變換的特征處理將需要低功耗融核處理器,以執(zhí)行浮點運算。

此外,在現(xiàn)實世界中,單個傳感器存在物理限制,并且其輸出隨時間發(fā)生偏差,例如由于由焊接和溫度引起的偏移和非線性縮放。為了補償這種不規(guī)則性,需要傳感器融合,以及快速、內(nèi)聯(lián)和自動的校準。

1511950728340915.jpg

圖1:活動分類的功能流程(來源Bosch Sensortec)

此外,所選擇的數(shù)據(jù)捕獲速率可以顯著影響所需的計算和傳輸量。通常來說,50Hz采樣率對于正常的人類活動就足夠了。但在對快速移動的活動或運動進行分析時,需要200 Hz的采樣率。同樣地,為了取得更快的響應(yīng)時間,可以安裝2 kHz單獨加速計來確定用戶目的。

為了迎接這些挑戰(zhàn),低功耗或者應(yīng)用特定傳感器集線器可以顯著降低分類引擎所需的CPU周期。比如Bosch Sensortec的BHI160和BNO055兩個產(chǎn)品就是這種傳感器集線器。相關(guān)軟件可直接以不同的傳感器數(shù)據(jù)速率直接生成融合后的傳感器輸出。

1511950737857014.jpg

1511950737664931.jpg

對待處理特征的初始選擇隨后會極大地影響訓練模型的大小、數(shù)據(jù)量以及訓練和執(zhí)行內(nèi)聯(lián)預(yù)測所需的計算能力。因此,對特定活動分類和區(qū)分所需的特征進行選擇是一項關(guān)鍵的決定,同時也很可能是重要的商業(yè)優(yōu)勢。

回顧我們上文提到的UCI機器學習數(shù)據(jù)庫,其擁有561個特征的完整數(shù)據(jù)集,使用默認的LibSVM內(nèi)核訓練的模型進行活動分類的測試準確度高達91.84%。然而,完成培訓和特征排名后,選擇最重要的19項功能足以達到85.38%的活動分類測試準確度。經(jīng)過對排名進行仔細檢查,我們發(fā)現(xiàn)最相關(guān)的特征是頻域變換以及滑動窗口加速度原始數(shù)據(jù)的平均值、最大值和最小值。有趣的是,這些特征都不能僅僅通過預(yù)處理實現(xiàn),傳感器融合對于確保數(shù)據(jù)的足夠可靠性十分必要,并因此對分類尤為實用。

結(jié)論

總而言之,科技發(fā)展現(xiàn)在已經(jīng)達到在便攜式設(shè)備上運行高級人工智能來分析運動傳感器的數(shù)據(jù)的程度。這些現(xiàn)代傳感器以低功耗運行,而傳感器融合和軟件分區(qū)則明顯提高了整個系統(tǒng)的效率和可行性,同時也大大簡化了應(yīng)用程序開發(fā)。

為了補充傳感器的基礎(chǔ)架構(gòu),我們利用開源庫和最佳實踐來優(yōu)化特征提取和分類。

為用戶提供真正的個性化體驗已成為現(xiàn)實,通過人工智能,系統(tǒng)可以利用由智能手機、可穿戴和其他便攜設(shè)備的傳感器所收集的數(shù)據(jù),為人們提供更多深度功能。未來幾年,一系列現(xiàn)在還難以想象的設(shè)備和解決方案將會得到更多發(fā)展。人工智能和傳感器為設(shè)計師和用戶打開了一個充滿了激動人心的機會的新世界。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2566

    文章

    53008

    瀏覽量

    767635
  • 智能手機
    +關(guān)注

    關(guān)注

    66

    文章

    18624

    瀏覽量

    183868
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249645
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    傳感器人工智能感知這個世界

    溫度、壓力、光線、聲音、加速度等,而人工智能則用來分析和處理這些數(shù)據(jù),從而做出智能決策或自動反應(yīng)。 此外,Edge AI結(jié)合傳感器的應(yīng)用技術(shù)正快速發(fā)展,推動多個領(lǐng)域的創(chuàng)新與進步。像是
    的頭像 發(fā)表于 01-25 15:46 ?731次閱讀

    人工智能在未來戰(zhàn)爭中占主導地位?

    探討人工智能在未來戰(zhàn)爭中的主導地位,并分析其帶來的潛在影響。 ? ? ? 首先,人工智能技術(shù)在戰(zhàn)爭系統(tǒng)中的應(yīng)用,顯著提高了作戰(zhàn)效率和減少了人為錯誤?,F(xiàn)代戰(zhàn)爭系統(tǒng),包括武器、傳感器、導航、航空支援和監(jiān)視等,都可以采用
    的頭像 發(fā)表于 01-22 08:05 ?588次閱讀

    博世人工智能傳感器如何改變生活

    傳感器技術(shù)正在重塑我們的生活。例如,它們可以追蹤健身數(shù)據(jù),簡化設(shè)備操作,或監(jiān)測空氣質(zhì)量。為了向消費者提供這些復雜的功能,Bosch Sensortec的傳感器正在不斷進化,集成了微機電系統(tǒng)(MEMS)
    的頭像 發(fā)表于 01-08 14:49 ?704次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    、連接主義和深度學習等不同的階段。目前,人工智能已經(jīng)廣泛應(yīng)用于各種領(lǐng)域,如自然語言處理、計算機視覺、智能推薦等。 嵌入式系統(tǒng)和人工智能在許多方面都存在密切的關(guān)聯(lián)性。首先,嵌入式系統(tǒng)可以為人工
    發(fā)表于 11-14 16:39

    Meta正努力推進人工智能觸覺傳感器的市場化進程

    11月1日,據(jù)TechCrunch報道,Meta近期宣布與傳感器專家GelSight及韓國機器人企業(yè)Wonik Robotics攜手,共同推進人工智能(AI)觸覺傳感器的市場化進程。   Meta強調(diào),此次合作的核心在于利
    的頭像 發(fā)表于 11-01 15:57 ?1039次閱讀

    光耦知識分享|探討光耦技術(shù)人工智能(AI)領(lǐng)域的應(yīng)用

    的信號傳輸特性,在AI人工智能領(lǐng)域具有廣泛的應(yīng)用前景:傳感器數(shù)據(jù)采集與隔離:在AI系統(tǒng)中,傳感器數(shù)據(jù)的采集和處理是至關(guān)重要的,而光耦技術(shù)可以提供可靠的電氣隔離,保
    的頭像 發(fā)表于 10-31 09:02 ?539次閱讀
    光耦知識分享|<b class='flag-5'>探討</b>光耦<b class='flag-5'>技術(shù)</b>在<b class='flag-5'>人工智能</b>(AI)領(lǐng)域的應(yīng)用

    人工智能在智慧城市建設(shè)中的應(yīng)用

    傳感器智能控制算法實時收集和分析交通數(shù)據(jù),實現(xiàn)智能信號控制,提高道路通行效率。 無人駕駛技術(shù) 結(jié)合智能車輛和無人駕駛
    的頭像 發(fā)表于 10-24 16:15 ?2356次閱讀

    人工智能的應(yīng)用領(lǐng)域有自動駕駛嗎

    的核心技術(shù) 自動駕駛汽車的核心依賴于人工智能,尤其是機器學習和深度學習技術(shù)。這些技術(shù)使得汽車能夠通過傳感器收集大量數(shù)據(jù),并實時進行分析。以下
    的頭像 發(fā)表于 10-22 16:18 ?1222次閱讀

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第6章人AI與能源科學讀后感

    探討人工智能如何通過技術(shù)創(chuàng)新推動能源科學的進步,為未來的可持續(xù)發(fā)展提供了強大的支持。 首先,書中通過深入淺出的語言,介紹了人工智能在能源領(lǐng)域的基本概念和
    發(fā)表于 10-14 09:27

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    人工智能:科學研究的加速 第一章清晰地闡述了人工智能作為科學研究工具的強大功能。通過機器學習、深度學習等先進技術(shù),AI能夠處理和分析海量數(shù)據(jù),發(fā)現(xiàn)傳統(tǒng)方法難以捕捉的模式和規(guī)律。這不
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    、RISC-V在人工智能圖像處理中的應(yīng)用案例 目前,已有多個案例展示了RISC-V在人工智能圖像處理中的應(yīng)用潛力。例如: Esperanto技術(shù)公司 :該公司制造的首款高性能RISC-V AI處理
    發(fā)表于 09-28 11:00

    生成式人工智能在教育中的應(yīng)用

    生成式人工智能在教育中的應(yīng)用日益廣泛,為教育領(lǐng)域帶來了諸多變革和創(chuàng)新。以下是對生成式人工智能在教育中的幾個主要應(yīng)用方面的詳細闡述:
    的頭像 發(fā)表于 09-16 16:07 ?2853次閱讀

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準備相關(guān)體會材料。看能否有助于入門和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學創(chuàng)新

    每個交叉領(lǐng)域,本書通過案例進行了詳盡的介紹,梳理了產(chǎn)業(yè)地圖,并給出了相關(guān)政策啟示。 《AI for Science:人工智能驅(qū)動科學創(chuàng)新》適合所有關(guān)注人工智能技術(shù)和產(chǎn)業(yè)發(fā)展的讀者閱讀,特別適合材料科學
    發(fā)表于 09-09 13:54

    FPGA在人工智能中的應(yīng)用有哪些?

    定制化的硬件設(shè)計,提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應(yīng)用場景進行定制化計算,為人工智能技術(shù)的發(fā)展提供有力支持。
    發(fā)表于 07-29 17:05