一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

科技綠洲 ? 來(lái)源:網(wǎng)絡(luò)整理 ? 作者:網(wǎng)絡(luò)整理 ? 2024-10-23 15:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹:

一、模型規(guī)模與復(fù)雜度

  • AI大模型 :通常包含數(shù)十億甚至數(shù)萬(wàn)億的參數(shù),模型大小可以達(dá)到數(shù)百GB甚至更大。這些模型結(jié)構(gòu)復(fù)雜,由多個(gè)神經(jīng)網(wǎng)絡(luò)層組成,每個(gè)層都包含大量的神經(jīng)元和權(quán)重參數(shù)。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :模型規(guī)模相對(duì)較小,參數(shù)數(shù)量通常只有幾千到幾百萬(wàn)個(gè),模型結(jié)構(gòu)相對(duì)簡(jiǎn)單。

二、訓(xùn)練數(shù)據(jù)需求

  • AI大模型 :需要大規(guī)模、多樣化的數(shù)據(jù)進(jìn)行訓(xùn)練,包括海量的文本、圖像、音頻等,以學(xué)習(xí)到更全面的語(yǔ)言規(guī)律和特征。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :往往使用較小的數(shù)據(jù)集進(jìn)行訓(xùn)練,數(shù)據(jù)多樣性也較低,通常針對(duì)特定任務(wù)進(jìn)行收集和標(biāo)注。

三、訓(xùn)練與推理資源

  • AI大模型 :需要大量的計(jì)算資源進(jìn)行訓(xùn)練和推理,如高性能的GPU或TPU等硬件。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :計(jì)算資源需求較低,可以使用普通的CPU進(jìn)行訓(xùn)練和推理。

四、性能與應(yīng)用

  • AI大模型 :具有強(qiáng)大的泛化能力,能夠在各種任務(wù)上表現(xiàn)出色,包括自然語(yǔ)言處理、圖像識(shí)別、語(yǔ)音識(shí)別等。支持持續(xù)學(xué)習(xí),即可以在新的數(shù)據(jù)上繼續(xù)訓(xùn)練,以適應(yīng)新的應(yīng)用場(chǎng)景和需求。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :在處理復(fù)雜任務(wù)時(shí)可能受到算法和模型結(jié)構(gòu)的限制,泛化能力相對(duì)較差。通常只能處理特定領(lǐng)域的簡(jiǎn)單任務(wù),且生成能力有限。在面對(duì)新的應(yīng)用需求時(shí),通常需要重新設(shè)計(jì)和實(shí)現(xiàn)算法和模型,無(wú)法快速適應(yīng)變化。

五、可解釋性與透明度

  • AI大模型 :可解釋性較差,因?yàn)槠鋸?fù)雜的內(nèi)部結(jié)構(gòu)和海量的參數(shù)使得決策過(guò)程難以被完全理解和解釋。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :在某些情況下具有更高的可解釋性和透明度,因?yàn)樗鼈兊慕Y(jié)構(gòu)和參數(shù)較少,決策過(guò)程更容易被理解和驗(yàn)證。

六、能耗與可持續(xù)性

  • AI大模型 :訓(xùn)練和推理過(guò)程消耗大量能源,隨著全球?qū)沙掷m(xù)發(fā)展的關(guān)注增加,如何降低能耗成為亟待解決的問(wèn)題。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :由于模型規(guī)模和計(jì)算資源需求較小,能耗相對(duì)較低。

七、倫理與社會(huì)影響

  • AI大模型 :可能會(huì)引發(fā)數(shù)據(jù)隱私、算法偏見(jiàn)等倫理問(wèn)題,需要在開(kāi)發(fā)和使用過(guò)程中進(jìn)行充分的考慮。
  • 傳統(tǒng)機(jī)器學(xué)習(xí) :由于其應(yīng)用范圍和影響范圍相對(duì)較小,倫理和社會(huì)影響也較小。

綜上所述,AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在模型規(guī)模、訓(xùn)練數(shù)據(jù)需求、計(jì)算資源、性能與應(yīng)用、可解釋性與透明度、能耗與可持續(xù)性以及倫理與社會(huì)影響等方面均存在顯著差異。這些差異使得兩者在各自的應(yīng)用場(chǎng)景中具有不同的優(yōu)勢(shì)和局限性。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 數(shù)據(jù)
    +關(guān)注

    關(guān)注

    8

    文章

    7256

    瀏覽量

    91910
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134646
  • AI大模型
    +關(guān)注

    關(guān)注

    0

    文章

    376

    瀏覽量

    618
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    任正非說(shuō) AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來(lái)呢?

    從簡(jiǎn)單的AI應(yīng)用入手,如使用機(jī)器學(xué)習(xí)算法進(jìn)行房?jī)r(jià)預(yù)測(cè)。收集當(dāng)?shù)胤績(jī)r(jià)的相關(guān)數(shù)據(jù),包括面積、房齡、周邊設(shè)施等信息,然后選擇合適的回歸算法(如線性回歸)來(lái)建立模型,通過(guò)不斷調(diào)整參數(shù)和優(yōu)化
    發(fā)表于 07-08 17:44

    Nordic收購(gòu) Neuton.AI 關(guān)于產(chǎn)品技術(shù)的分析

    Nordic Semiconductor 于 2025 年收購(gòu)了 Neuton.AI,這是一家專注于超小型機(jī)器學(xué)習(xí)(TinyML)解決方案的公司。 Neuton 開(kāi)發(fā)了一種獨(dú)特的神經(jīng)網(wǎng)絡(luò)框架,能夠
    發(fā)表于 06-28 14:18

    【「零基礎(chǔ)開(kāi)發(fā)AI Agent」閱讀體驗(yàn)】+ 入門篇學(xué)習(xí)

    很高興又有機(jī)會(huì)學(xué)習(xí)ai技術(shù),這次試讀的是「零基礎(chǔ)開(kāi)發(fā)AI Agent」,作者葉濤、管鍇、張心雨。 大模型的普及是近三年來(lái)的一件大事,萬(wàn)物皆可大模型
    發(fā)表于 05-02 09:26

    【「零基礎(chǔ)開(kāi)發(fā)AI Agent」閱讀體驗(yàn)】+初品Agent

    模型落地的重要方向,也是AI技術(shù)的下一個(gè)風(fēng)口。 因此該書適于對(duì)AI感興趣的讀者,尤其是Agent的學(xué)習(xí)者與開(kāi)發(fā)者,如想要提升工作效率的職場(chǎng)人、推動(dòng)企業(yè)
    發(fā)表于 04-22 11:51

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合 近期收到不少伙伴咨詢nRF54系列芯片的應(yīng)用與技術(shù)細(xì)節(jié),今天我們整理幾個(gè)核心問(wèn)題與解答,帶你快速掌握如何在nRF54上部署
    發(fā)表于 04-01 00:00

    AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》----- 學(xué)習(xí)如何開(kāi)發(fā)視頻應(yīng)用

    再次感謝發(fā)燒友提供的閱讀體驗(yàn)活動(dòng)。本期跟隨《AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》這本書學(xué)習(xí)如何構(gòu)建開(kāi)發(fā)一個(gè)視頻應(yīng)用。AI Agent是一種智能應(yīng)用,能夠根據(jù)用戶需求和環(huán)境變化做出相應(yīng)響應(yīng)。通?;谏疃?/div>
    發(fā)表于 03-05 19:52

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器
    的頭像 發(fā)表于 02-13 09:39 ?365次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01
    的頭像 發(fā)表于 12-30 09:16 ?1194次閱讀
    <b class='flag-5'>傳統(tǒng)</b><b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    LLM和傳統(tǒng)機(jī)器學(xué)習(xí)區(qū)別

    在人工智能領(lǐng)域,LLM(Large Language Models,大型語(yǔ)言模型)和傳統(tǒng)機(jī)器學(xué)習(xí)是兩種不同的技術(shù)路徑,它們?cè)谔幚頂?shù)據(jù)、模型結(jié)
    的頭像 發(fā)表于 11-08 09:25 ?1900次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2982次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么<b class='flag-5'>區(qū)別</b>

    AI模型與深度學(xué)習(xí)的關(guān)系

    AI模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)AI
    的頭像 發(fā)表于 10-23 15:25 ?2901次閱讀

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    RISC-V如何支持不同的AI機(jī)器學(xué)習(xí)框架和庫(kù)?

    RISC-V如何支持不同的AI機(jī)器學(xué)習(xí)框架和庫(kù)?還請(qǐng)壇友們多多指教一下。
    發(fā)表于 10-10 22:24

    AI即服務(wù)平臺(tái)與傳統(tǒng)軟件的區(qū)別

    AI即服務(wù)平臺(tái)與傳統(tǒng)軟件在開(kāi)發(fā)方式、功能用途、用戶體驗(yàn)、數(shù)據(jù)處理與學(xué)習(xí)能力以及應(yīng)用場(chǎng)景等方面存在顯著差異。
    的頭像 發(fā)表于 10-09 11:10 ?751次閱讀

    AI引擎機(jī)器學(xué)習(xí)陣列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在憑借 AI 引擎機(jī)器學(xué)習(xí) ( ML ) 架構(gòu)來(lái)提供突破性
    的頭像 發(fā)表于 09-18 09:16 ?826次閱讀
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>陣列指南