一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

華為麒麟970的NPU(神經(jīng)網(wǎng)絡處理器)到底是什么鬼

5RJg_mcuworld ? 2018-02-12 11:19 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

所謂的HiAI移動計算架構,主要有四部分組成,CPU、GPU、ISP/DSP和NPU。作為全球第一枚集成專用NPU的移動芯片,華為重點介紹NPU神經(jīng)網(wǎng)絡單元,聲稱在HiAI架構下AI性能密度大幅優(yōu)于CPU和GPU,能夠用更少的能耗更快的完成更多任務,大幅提升芯片的運算效率。

AI芯片能夠以人類的思考方式來理解人類訴求,具備高處理速度,高密度和高能效比,而麒麟970只是個開始,并超越競爭對手。

CPU部分,麒麟970與上一代麒麟960一樣為八核心設計,由4個主頻為2.4GHz的Cortex-A73大內(nèi)核與4個主頻1.8GHz的Cortex-A53內(nèi)核組成,性能上無變化,畢竟同樣架構頻率,傳聞所說的2.8GHz主頻吊打驍龍835并沒能實現(xiàn),但跑分上追平驍龍835應該沒問題,并且得益于10納米工藝的進步能效提升20%。

更具體來說,在16位浮點數(shù)(即FP16)時,麒麟970內(nèi)置的NPU運算能力達到1.92 TFLOPs,在AI人工智能深度學習下,所有硬件能夠協(xié)調(diào)芯片內(nèi)部的各個組件及手機硬件,如ISP、DSP,保持處理某些特定任務時,提升速度并低功耗運作。例如有了NPU的加成,在圖像識別任務上,對比Cortex-A73 CPU 性能提升25倍,能效提升50倍之多,拍攝1000張照片僅僅消耗4000mAh電池手機0.19%的電量,圖像識別速度可達到約2000張/分鐘。

相比之下,三星S8使用CPU處理每分鐘僅95張,蘋果iPhone 7 Plus同時使用CPU和GPU,每分鐘也僅能識別487張,華為完勝。

簡而言之,麒麟970有了NPU單元之后,至少在拍照和圖像處理上,比之前單純依賴CPU和GPU要快得多。而對于競爭對手,麒麟970最直接的就是保持高效率,并且更加的省電。未來AI獨立單元內(nèi)置于芯片一定是趨勢,蘋果也在做,只是華為搶先開了個頭.

華為麒麟970的NPU(神經(jīng)網(wǎng)絡處理器)到底是什么鬼

日前,美國知名科技媒體Android Authority主筆Gary Sims對麒麟970進行了深度解讀,講述了麒麟970的人工智能NPU的工作原理,對芯片設計的深遠影響,以及為用戶使用場景帶來的跨越式體驗。

“神經(jīng)網(wǎng)絡(Neural Networks)”和“機器學習(Machine Learning)”是近兩年移動處理器領域最流行的兩個詞。華為麒麟970的NPU(神經(jīng)網(wǎng)絡處理器)、Google Pixel 2內(nèi)置的IPU(圖像處理器),以及蘋果A11 Bionic,都是實現(xiàn)上述功能特性的專用硬件解決方案。

既然華為、Google和蘋果都在都在探索神經(jīng)引擎處理器,你可能以為機器學習需要特定的硬件。其實不然,神經(jīng)網(wǎng)絡可以在任何形式的處理器上運行,從微處理器到CPU、GPU甚至是DSP。

所以,問題的根本不在于處理器是否能利用神經(jīng)神經(jīng)網(wǎng)絡和機器學習,而在于它到底有多快,能提升多少效率。

如果時間倒退回30年前,當年的桌面處理器是沒有的FPU(浮點運算單元)芯片的,在486之后,Intel把FPU集成到了CPU內(nèi)部,浮點運算性能大幅提升。而在很多實例計算中,全都是浮點數(shù)運算。這樣以來,有FPU和沒有FPU,運算效率天差之別。

而如今,移動處理器中的NPU也是類似的情況。你可能覺得我們并不需要NPU,就能使用神經(jīng)網(wǎng)絡,但實時情況是,華為正在用事實案例證明,當遇到實時處理運算的情況,NPU是必須的。

簡單來說,“神經(jīng)網(wǎng)絡”可以理解為“機器學習”中“教”一臺機器區(qū)別分辨不同“事物”的一系列技術中的一種。上述“事物”可以是一張照片、一個單詞甚至是一種動物的聲音,諸如此類。

“神經(jīng)網(wǎng)絡”由很多“神經(jīng)元”組成,這些“神經(jīng)元”可以接收輸入信號,然后通過網(wǎng)絡再向外傳播信號,這取決于輸入的強度和自身閾值。

舉個簡單的例子,神經(jīng)網(wǎng)絡正在監(jiān)測一組燈其中一個的開關,但在網(wǎng)絡中,這些燈的狀態(tài)只能0或者1來表達,但不同的燈可能會出現(xiàn)一樣的開關狀態(tài)。

那么問題來了,神經(jīng)網(wǎng)絡怎么知道是該輸出0還是該輸出1呢?沒有規(guī)則或者程序能告訴神經(jīng)網(wǎng)絡,輸出我們想得到的邏輯答案。

唯一的方面就是對神經(jīng)網(wǎng)絡進行訓練。大量的“樣本”和預期結(jié)果一起被注入到神經(jīng)網(wǎng)絡中,各種各樣的閾值反復微調(diào),不斷產(chǎn)生接近預期的結(jié)果。這個階段可以稱為“訓練階段”。

這聽起來很簡單,但實際上相當復雜,尤其是遇到語言、圖像這種復雜樣本的時候。一旦訓練達成,神經(jīng)網(wǎng)絡會自動學會輸出預期結(jié)果,即便輸入的“樣本”之前從來沒有見過。

神經(jīng)網(wǎng)絡訓練成功后,本質(zhì)上就成了一種靜態(tài)神經(jīng)網(wǎng)絡模型,它就能應用在數(shù)以百萬計的設備上用于推理,在CPU、GPU甚至是DSP上運行。這個階段可以稱為“推理階段”。

Gary Sims指出,“推理階段”的難度要低于“訓練階段”,而這正是NPU發(fā)揮專長的地方。

所以,華為麒麟970最大的不同是,專門設置了NPU硬件芯片,它在處理靜態(tài)神經(jīng)網(wǎng)絡模型方面有得天獨厚的優(yōu)勢,不僅更快,還更有效率。事實上,NPU甚至能以17-33fps實時處理智能手機攝像頭拍攝的“直播”視頻

從架構來看,麒麟970像是一臺“發(fā)電站”,內(nèi)置8顆CPU和12顆GPU,另有移動網(wǎng)絡連接以及多媒體處理模塊,晶體管規(guī)模達到了史無前例的55億顆。據(jù)華為透露,NPU大約內(nèi)含1.5億晶體管,不到整個芯片的3%。

這對于一款移動處理器來說尤為重要。首先,NPU的加入不會明顯增大處理器的尺寸、成本,這就意味著,NPU不僅能放入旗艦手機,一些中端手機也能適用。在未來5年,NPU將對Soc設計產(chǎn)生深遠影響。

其次是功耗和效率。NPU并非“電老虎”會犧牲手機的續(xù)航,相反它能高效的幫CPU承擔大量推理運算的任務,反而能節(jié)省不少功耗。

在最后的總結(jié)中,Gary Sims表示,如果華為能吸引更多第三方App開發(fā)者使用NPU,其前景不可限量。想象一下,當App在使用圖像、聲音、語音識別的時候,全部都能本地處理,不再需要網(wǎng)絡連接或者云服務,App的使用體驗將大大提升和加強。

試想,一名游客直接通過相機App就能認出當?shù)氐貥?,App能智能識別你的食物并給出相應的卡路里熟知、提醒食物過敏......

你認為,NPU會像當年FPU之于CPU一樣,成為移動Soc芯片的標準嗎?不妨在評論中發(fā)表自己的看法。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4814

    瀏覽量

    103609
  • 機器學習
    +關注

    關注

    66

    文章

    8503

    瀏覽量

    134611
  • 麒麟970
    +關注

    關注

    10

    文章

    264

    瀏覽量

    63673

原文標題:外媒:終于看懂Kirin 970的NPU

文章出處:【微信號:mcuworld,微信公眾號:嵌入式資訊精選】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    多層。 每一層都由若干個神經(jīng)元構成,神經(jīng)元之間通過權重連接。信號在神經(jīng)網(wǎng)絡中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?667次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡權重,目的是最小化網(wǎng)絡的輸出誤差。 二、深度學習的
    的頭像 發(fā)表于 02-12 15:15 ?859次閱讀

    NPU是如何發(fā)展起來的?性能受哪些因素影響?

    (電子發(fā)燒友網(wǎng)綜合報道) NPU是一種專門用于加速神經(jīng)網(wǎng)絡計算的硬件處理器。隨著人工智能和深度學習技術的快速發(fā)展,傳統(tǒng)的CPU和GPU在處理復雜的
    的頭像 發(fā)表于 02-05 07:50 ?2699次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1189次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發(fā)展,卷積神經(jīng)網(wǎng)絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1870次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1126次閱讀

    NPU與傳統(tǒng)處理器的區(qū)別是什么

    隨著人工智能技術的快速發(fā)展,深度學習成為了推動這一進步的核心動力。深度學習模型,尤其是神經(jīng)網(wǎng)絡,需要大量的并行計算能力來訓練和推理。為了滿足這一需求,NPU神經(jīng)處理單元)應運而生,與
    的頭像 發(fā)表于 11-15 09:29 ?1228次閱讀

    NPU在邊緣計算中的優(yōu)勢

    隨著物聯(lián)網(wǎng)(IoT)和5G技術的發(fā)展,邊緣計算作為一種新興的計算模式,正在逐漸成為處理和分析數(shù)據(jù)的重要手段。 NPU的定義與功能 NPU是一種專門為深度學習和神經(jīng)網(wǎng)絡運算設計的
    的頭像 發(fā)表于 11-15 09:13 ?1252次閱讀

    什么是NPU芯片及其功能

    在人工智能(AI)技術迅猛發(fā)展的今天,NPU芯片已經(jīng)成為推動這一領域進步的關鍵技術之一。NPU芯片,即神經(jīng)網(wǎng)絡處理單元,是一種專門為深度學習算法設計的硬件加速
    的頭像 發(fā)表于 11-14 15:48 ?5241次閱讀

    LSTM神經(jīng)網(wǎng)絡的結(jié)構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:05 ?1631次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    在深度學習領域,循環(huán)神經(jīng)網(wǎng)絡(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 09:58 ?1213次閱讀

    LSTM神經(jīng)網(wǎng)絡的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),它能夠?qū)W習長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依
    的頭像 發(fā)表于 11-13 09:53 ?1583次閱讀

    NPU和GPU有什么區(qū)別

    NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理器) 是一種專門設計用于加速神經(jīng)網(wǎng)絡運算的硬件加速。它的核心理念是模擬人
    的頭像 發(fā)表于 08-13 09:32 ?2417次閱讀

    如何構建多層神經(jīng)網(wǎng)絡

    構建多層神經(jīng)網(wǎng)絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構建一個多層神經(jīng)網(wǎng)絡模型,包括模型設計、
    的頭像 發(fā)表于 07-19 17:19 ?1565次閱讀